JAKÅ

User Manual

JAKA Software

Dokumenten-Status:	Released
Dokumenten-Version:	1.0
Dokumenten-Datum:	01.09.2024
Dokumenten-Layout:	Documentation Department

Dokumenten-Autor: JAKA Robotics GmbH

Die hierin enthaltenen Informationen sind vertraulich und Eigentum der JAKA Robotics GmbH. Der Besitz dieses Dokuments berechtigt keinesfalls zur Verwendung der darin enthaltenen Informationen. Die Verbreitung oder Verwendung der in diesem Dokument beschriebenen Informationen, Methoden und Vorgänge ist ausschließlich mit schriftlicher Genehmigung eines leitenden Angestellten der JAKA Robotics GmbH zulässig. Die Definition des Roboters erfolgt aus den internationalen ISO-Normen und den einschlägigen Vorschriften der nationalen Normen zum Schutz und der Sicherheit des Bedieners. Wir empfehlen nicht, den Roboter zur direkten Zusammenarbeit mit Menschen einzusetzen, wenn der Roboterarm in Kontakt mit dem menschlichen Körper kommen kann. Wenn der Roboter direkt mit dem Menschen zusammenarbeitet, ist es notwendig, ein sicheres, zuverlässiges, vollständig getestetes und zertifiziertes Sicherheitsschutzsystem zu erstellen. Alle Maßnahmen dienen dem Schutz des Bedieners.

Der gesamte Inhalt dieses Benutzerhandbuchs ist ausschließliches Eigentum von JAKA Robotics (nachfolgend als JAKA bezeichnet) und darf ohne schriftliche Genehmigung von JAKA in keiner Form verwendet werden. Das Benutzerhandbuch wird von JAKA regelmäßig aktualisiert und verbessert. Der Inhalt kann ohne vorherige Ankündigung geändert werden. Bitte prüfen Sie die aktuellen Produktinformationen sorgfältig, bevor Sie dieses Handbuch verwenden.

Die im Benutzerhandbuch enthaltenen Informationen stellen keine Verpflichtung von JAKA dar. JAKA übernimmt keine Verantwortung für eventuelle Fehler in diesem Handbuch und haftet nicht für zufällige oder indirekte Schäden, die durch die Verwendung dieses Handbuchs und der darin vorgestellten Produkte entstehen. Bitte lesen Sie dieses Handbuch sorgfältig durch, bevor Sie den Roboter installieren und benutzen. Die Bilder in diesem Handbuch dienen nur als Referenz, bitte beziehen Sie sich trotzdem auf das tatsächliche Produkt.

Wenn der kollaborative Roboter unautorisiert verändert wird, übernimmt JAKA keine Haftung für den Kundendienst.

JAKA weist den Benutzer darauf hin, dass bei der Verwendung und Wartung des JAKA-Roboters die Sicherheitsausrüstung zu verwenden und die Sicherheitsvorschriften einzuhalten sind.

Der Programmierer des JAKA-Roboters und der Designer & Debugger des Robotersystems müssen mit dem Programmiermodus des JAKA-Roboters und der Installation der Systemanwendung vertraut sein.

Inhaltsverzeichnis

1	Lege	nde	5
2	Schn	ellstart	6
3	Übers	sicht	7
	3.1	Softwa	refunktionen7
	3.2	System	nanforderungen7
	3.3	System	neinstellung7
	3.4	Installa	tion der Software8
		3.4.1	Installation der JAKA-App auf
			Android-Endgeräten8
		3.4.2	Installation der JAKA-App auf
			Windows-Endgeräten9
		3.4.3	Deinstallation der JAKA-App auf
			Android-Endgeräten
		3.4.4	Deinstallation der JAKA-App auf
			Windows-Endgeräten13
4	Softw	are Ein	führung14
	4.1	Startse	ite14
		4.1.1	Beschreibung Interface14
		4.1.2	Hilfe
	4.2	Interfac	ce-Funktionen15
		4.2.1	Roboterverbindung15
			4.2.1.1 Roboter-Login17
			4.2.1.2 Offline-Verbindung18
			4.2.1.3 Offline-Upgrade19
		4.2.2	Verbindungsinformationen
			überprüfen21
		4.2.3	Schaltschrank ausschalten22
		4.2.4	Roboter aktivieren/deaktivieren23
		4.2.5	Signal24
		4.2.6	Roboter Log-Informationen25
			4.2.6.1 Information27
			4.2.6.2 Warnung27
			4.2.6.3 Fehler27
		4.2.7	Wechseln zwischen Roboter und
			Robotersimulation27
		4.2.8	Sicherheitsprüfsumme
			(Safety Checksum)28
		4.2.9	Überwachung
			des Roboterzustands29
		4.2.10	Versionsinformationen
			4.2.10.1 Spracheinstellungen 31
			4.2.10.2 Version

			4.2.10.3	Kundenservice	. 31
			4.2.10.4	Updates	. 32
5	Finet	ollungo	n		34
5	5 1	System	noinstellur	naan	34 34
	5.1	5 1 1	Grundeir	stellungen	. 54 34
		5.1.1	Notzworl	voinotollungon	. 34
		5.1.Z		keinstellungen	. 30
		5.1.3	Add-On.		. 35
		5.1.4	versions	upgrade	. 36
		5.1.5	System-I	Backup	. 38
		5.1.6	Benutzer	-Management	. 39
	5.2	Betrieb	seinstellu	ngen	. 40
		5.2.1	TCP-Ein	stellungen	. 41
			5.2.1.1	Manuelle	
				Einstellungen	. 42
			5.2.1.2	4-Punkte-	
				Einstellungen	. 43
			5.2.1.3	6-Punkte-	
				Einstellungen	. 44
		5.2.2	Einstellu	ngen des	
			Benutzer	koordinatensytems	. 45
			5.2.2.1	Eingabeeinstellungen.	. 47
			5.2.2.2	3-Punkte-	
				Einstellungen	. 47
		5.2.3	Einstellu	ngen der Nutzlast	. 48
		5.2.4	Montage	einstellungen	.51
		525	Fehlerdia	adnose	52
	53	Sicher	heitseinste	ellungen	53
	0.0	531	Grenzwe	erteinstellungen	. 00
		0.0.1	der Ache	on	53
		532	Einstellu	ngon	. 55
		5.5.Z		nyen	51
		E 2 2			. 54
		5.3.3	Grenzwe	enteinistellungen des	
			Robolers	5 D	. ວວ
			5.3.3.1	Bewegungs-	50
					. 56
			5.3.3.2	Einstellungen der	
				Kollisionserkennung	. 56
			5.3.3.3	Einstellungen des	
				reduzierten Modus	. 57
			5.3.3.4	Freedrive-	
				Begrenzung	. 58
		5.3.4	Einstellu	ngen	
			der Siche	erheitszone	. 59
		5.3.5	Einstellu	ngen	
			der Werk	zeugausrichtung	. 61
		5.3.6	Dediziert	e E/A-	
			Sicherhe	itseinstellungen	. 63

6.4.2 Einstellung analoge

			5.3.6.1	CAB 2.163
			5.3.6.2	MiniCab64
			5.3.6.3	Beschreibung der
				Sicherheits-E/A65
			5.3.6.4	Redundanz des
				Eingangssignals70
	5.4	Progra	mmeinste	ellungen71
		5.4.1	Standard	dprogramm laden71
		5.4.2	Aufzeich	nung von Traiektorien73
		5.4.3	Systemy	variablen
		544	Prozenti	lelle Verlangsamung
		•••••	der Proo	rammaeschwindigkeit 75
	55	Komm	unikation	sprotokolle 77
	0.0	551	Modbus	77
		552	Sensor	am Roboterflansch 78
		553		
		5.5.5	Ethornot	//D 70
		5.5.4	Woitoro	/IF
		5.5.5	Finatallu	
		EEG		ngen00
		5.5.0	TIO	ðl
			5.5.6.1	Konfiguration der
				Ausgangsspannung82
			5.5.6.2	Konfiguration RS48582
			5.5.6.3	Drehmoment-Sensor84
			5.5.6.4	Greifer85
			5.5.6.5	Semaphore85
			5.5.6.6	Ubermittlung eines
				Sofortbefehls86
			5.5.6.7	TIO-Unterstützung bei
				der Programmierung87
		5.5.7	Bremssp	oannung87
6	Elekt	rische	Ein- und	Ausgänge89
	6.1	Uberbl	ick über c	lie E/A-Funktionen89
		6.1.1	Funktion	ien der
			digitalen	Eingänge89
		6.1.2	Funktion	en der digitalen
			Ausgäng	je92
	6.2	Ein- ur	nd Ausgär	nge am Schaltschrank93
		6.2.1	CAB 2.1	
		6.2.2	MiniCab	94
	6.3	Werkz	eug-Eingä	ange/Ausgänge95
		6.3.1	Einstellu	ng digitale Eingänge95
		6.3.2	Einstellu	ng digitale Ausgänge96
		6.3.3	Einstellu	ng analoge Eingänge96
	6.4	Modbu	ıs Eingän	ge/Ausgänge96
		6.4.1	Einstellu	ng digitale
			Eingäng	e/Ausgänge97

4

			Eingäng	e/Ausgänge	97			
	6.5 PROFINET Eingänge/Ausgänge97							
	6.6	Ethernet/IP Eingänge/Ausgänge98						
	6.7	Skalierbare Eingänge/Ausgänge9						
		6.7.1 Modbus TCP/IP 1						
		6.7.2	Modbus	RTU	. 101			
7	Manu	elle Be	dienung		. 102			
	7.1	Beweg	ungssteu	erung	. 102			
		7.1.1	Schaltflä	che Koordinatensyster	m102			
			7.1.1.1	Schaltfläche Benutze	r-			
				koordinatensystem	. 103			
			7.1.1.2	Schaltfläche Werkzeu	ıg-			
				koordinatensystem	. 103			
		7.1.2	Roboters	steuerung	. 103			
		7.1.3	Einstellu	ng der				
			Bewegu	ngsgeschwindigkeit	. 104			
		7.1.4	Räumlicl	ne Bewegung	. 105			
		7.1.5	MoveJ		. 105			
		7.1.6	Positions	sbewegung	. 106			
8	Prog	rammie	rung		. 108			
	8.1	Progra	mmierbef	ehle	. 109			
	8.2	Progra	mmierber	eich	. 109			
	8.3	Progra	mm-Syml	oolleiste	. 109			
		8.3.1	Program	müberwachung	. 109			
		8.3.2	Program	mbetrieb	. 110			
		8.3.3	Anpassu	ing der Schnittstelle	. 113			
Ab	bildu	ngsverz	eichnis.		. 114			
Та	bellen	verzeic	hnis		. 117			
Δr	hana	Δ Βοημ	itzorman	agement	118			
	mang			agement				
Ar	nhang Robo	B Datei terpara	ntypen vo metern	on	. 121			
Ar	nhang	C Siche	erheitsfu	nktionen	. 122			
Ar	nhang	D Modk	ous E/A-A	Adresstabelle	. 136			
Ar	nhang	E PROI	FINET E/	A-Adresstabelle	. 143			
Ar	nhang	F Ether	net/IP E/	A-Adresstabelle	. 150			
Ar	nhang	G Allge	emeine E	/A-Adresstabelle	. 156			
No	otizen.				. 159			

1 Legende

GEFAHR

Gefahr durch Stromschlag mit möglicher schwerer Körperverletzung oder Tod als Folge.

WARNUNG

Warnung vor einer möglichen Körperverletzung oder Tod.

VORSICHT

Hinweis auf die Gefahr von Sachschäden.

INFORMATION

Gibt ergänzende Informationen und Erklärungen.

ANMERKUNG

Gibt zusätzliche Anweisungen und Tipps.

WARTUNG

Erklärungen zu Wartung, Schutz, Pflege und zur Behebung von Funktionsstörungen.

2 Schnellstart

Bevor die JAKA-App verwendet werden kann, müssen der Roboter und der Schaltschrank installiert und die Kabel angeschlossen sein. Die nachfolgende Tabelle zeigt am Beispiel der JAKA Zu Serie, welche einzelnen Schritte zur Verwendung der Software benötigt werden. Einzelheiten sollen dem User Manual des vom Kunden verwendeten Robotermodels entnommen werden.

	Schritt	Tätigkeit
1		Roboter auspacken. (Um den Roboter später transportieren zu können, behalten Sie die Originalverpackung.)
2		Roboter aus dem Verpackungsmaterial entnehmen.
3	Roboteraufbau	Den Roboter zum gewünschten Montageplatz bringen.
4		Den Roboter auf die Montageplattform oder Basis heben und sichern.
5		Das Endeffektorwerkzeug (falls vorhanden) sichern.
6		Schaltschrank auspacken.
	Schaltschrank	Den Schaltschrank aus Verpackungsmaterial entnehmen und in die Nähe des
7	installieren	Roboters stellen. Die Länge des Verbindungskabels vom Schaltschrank zum
		Roboter beträgt 6 m. Den Abstand daher geringer als 6 m halten.
		Das Roboteranschlusskabel, Stromkabel des Schaltschranks, Bediengriff-
8		Kabel, Ethernet-Kabel (falls vorhanden) und TIO-Kabel (falls vorhanden)
	Kabelverbindungen	nacheinander anschließen.
9	herstellen	Den Kippschalter an der Unterseite des Schaltschranks umlegen.
10		Die Not-Aus-Taste am Bediengriff ist standardmäßig gelöst. Falls die durchgedrückt ist, lösen Sie diese.
44		Den Schaltschrank und Roboter einschalten und Roboter mit dem Bediengriff
11	Roboter verbinden	aktivieren.
12		Mit einem PC, Tablet oder Handy Verbindung zum Roboter herstellen.
13	Roboter einstellen	Die Montageausrichtung, Traglast und Kollisionsempfindlichkeit in der JAKA Zu App einstellen.
14	Roboter bedienen	Bewegen Sie den Roboter entweder mit der Free-Taste am Roboter oder mit Eingaben in der JAKA Zu App.

Tbl. 2-1 Schnellstart

WARNUNG

Bei der Durchführung der in der Tabelle enthaltenen Schritte müssen unbedingt die Anweisungen im entsprechenden Roboter User Manual befolgt werden.

3 Übersicht

Die JAKA-App dient zur Steuerung, Überwachung und Einstellung der Roboterfunktionen. Die Software ermöglicht manuelle Bedienung/Steuerung, Programmierung, Parameterkonfiguration und Informationsüberwachung der verschiedenen JAKA-Roboter. Unhandliche Roboter-Handprogrammiergeräte werden durch die App ersetzt. Die Software funktioniert sowohl auf Android-Geräten als auch auf Windows PCs gleichermaßen. Um den Roboter zu steuern, muss die Software auf dem genannten Gerät installiert werden und der Roboter und das Gerät mit der Software müssen mit demselben lokalen Netzwerk verbunden sein. Durch die App kann die Verbindung zum Roboter hergestellt werden und der Roboter auf diese Weise gesteuert werden.

3.1 Softwarefunktionen

Folgende Funktionen sind durch die Nutzung der Software möglich:

- 1) Einsicht in allgemeine Informationen und Ereignisprotokolle des Roboters.
- 2) Manuelle Bedienung/Steuerung des Roboters.
- 3) Einstellung der E/A-Module des Roboters.
- 4) Programme zur Robotersteuerung schreiben.
- 5) Parameterkonfiguration des Roboters.

3.2 Systemanforderungen

Die minimalen Systemanforderungen an die Endgeräte für die Nutzung der JAKA-App sind folgende:

Endgerät	Android	Windows	
Betriebssystem	Android 10.0 und höher	Windows 7 (64 Bit und höher)	
Prozosor	Snapdragon 835 und	Intel Core i3-6100, 3.7 GHz und	
FIOZESSO	vergleichbare Prozessoren	höher	
Festplatte	512MB verfügbar	1GB verfügbar	
Arbeitsspeicher	4GB	8GB	
Grafik	/	Intel HD Graphics 530 und höher	
Kommunikation	WiFi	WiFi oder Ethernet	

Tbl. 3-1 Systemanforderungen

3.3 Systemeinstellung

Sobald die JAKA-App auf dem entsprechenden Endgerät installiert ist, sollte die Batteriesparfunktion in den Systemeinstellungen der JAKA-App des Endgeräts deaktiviert werden, um zu verhindern, dass der Roboter ausgeschaltet wird, nachdem der Sperrbildschirm des Endgeräts erscheint. Diese Schritte können je nach Endgerät variieren.

3.4 Installation der Software

Stellen Sie sicher, dass das System die minimalen Anforderungen (in Kapitel 3.2 Systemanforderungen) für die Installation und den Betrieb der JAKA-App erfüllt.

3.4.1 Installation der JAKA-App auf Android-Endgeräten

Das JAKA-App-Installationspaket wird Ihnen von autorisiertem Personal bereitgestellt. Die Android-App-Paketdatei muss auf Ihr Android-Endgerät heruntergeladen werden. Die Dateiendung ist: .apk. Das folgende Beispiel zeigt den Installationsvorgang am Xiaomi Pad 6 Android-Endgerät (Spracheinstellung: Englisch). Der Vorgang kann für verschiedene Android-Endgeräte und Versionen variieren. Bitte entnehmen Sie den genauen Installationsvorgang der dazugehörigen Bedienungsanleitung Ihres Android-Endgeräts.

In der Benutzeroberfläche des Android-Endgeräts klicken Sie Settings > Apps > Manage apps.

Settings	Apps	
Home screen	System app settings	>
🧰 Stylus & keyboard	Manage apps	>
	Manage Home screen shortcuts	>
Passwords & security	Dual apps	>
Privacy protection	Permissions	>
Battery	App lock	>
O Apps	Parallel windows	>
Additional settings	Mi Protect	>
A Mi Al		
Screen time		

Illustr. 3-1 Installation App Android 1/3

Wählen Sie die App an, welche zur Installation der JAKA-App verwendet wird, und klicken Sie **Install apps from unknown sources**.

Settings	\leftarrow		App info	()
6 Home screen		Data usage	0	9B >
Stylus & keyboard		Battery	0.0	% >
		Permissions		
Passwords & security		Autostart		
Privacy protection		Permissions		>
Battery		Notifications	Y	es >
O Apps		Battery saver	MIUI Battery sav	er >
Additional settings		Advanced settings		
		Blur app previews		
🙈 Mi Al		Install apps from unknown sources	i Vi	es >
Screen time				

Illustr. 3-2 Installation App Android 2/3

Stellen Sie den Regler um auf Alow from this source.

Settings	← Install unknown apps
Home screen	Allow from this source
👼 Stylus & keyboard	Your tablet and personal data are more vulnerable to attack by unknown apps. By installing apps from this source, you agree that you are responsible for any damage to your tablet or loss of data that may result from their use.
Passwords & security	
Privacy protection	
Battery	
O Apps	
Additional settings	
🔺 Mi Al	
Screen time	

Illustr. 3-3 Installation App Android 3/3

3.4.2 Installation der JAKA-App auf Windows-Endgeräten

Das JAKA-App-Installationspaket wird Ihnen von autorisiertem Personal bereitgestellt. Die Windows-App-Paketdatei muss auf Ihr Windows-Endgerät heruntergeladen werden. Die Dateiendung ist: .exe. Starten Sie die Installation durch einen Doppelklick auf die Installationsdatei. Das Installationsfenster öffnet sich.

Illustr. 3-4 Installation App Windows 1/7

Klicken Sie die Lizenzvereinbarung an, lesen Sie diese.

Software License Agreement	^
This "Software License Agreement" (hereinafter referred to as "this Agreement") is a valid contract entered into between JAKA Robotics Co., Ltd. (JAKA Robotics Co., Ltd. and its affiliated companies, netuding but not limited to subsidiaries, sub-subsidiaries, and holding companies, whether directly or ndirectly controlled the party, controlled by the party, or under common control with the party, collectively referred to as "JAKA" or "we" under this Agreement) and you regarding the licensing and use of the JAKA zu product software. By clicking to confirm this Agreement on a web page, accessing and using the product software without clicking to confirm this Agreement, or accepting this Agreement in any other way, you indicate that you and JAKA have reached an agreement and agree to accept all the provisions of this Agreement.	f
Regarding this Agreement, we would like to draw your special attention to the clauses related to liability imitations, disclaimers, JAKA's determination and handling of your violations or breaches, as well as the clause regarding the choice of jurisdiction. The clauses regarding liability limitations and disclaimers may be injulighted in bold or underlined for your attention. Before accepting this Agreement, we kindly request that you carefully read and fully understand all its provisions. If you have any questions regarding the terms of this Agreement, you can contact JAKA through the customer service email marketing@jaka.com. If you lisagree with or have doubts about any part of this service or any modifications made to it at any time, please refrain from proceeding. Once you access and use the JAKA Zu product software and its related services, it, will be deemed that you have understood and fully agreed to all the provisions of this Agreement, including any modifications made by JAKA to this Agreement at any time.	t
A Anna di anna di Anna di Alina Anna anna anna anna anna anna anna a	~

Illustr. 3-5 Installation App Windows 2/7

Wenn Sie damit einverstanden sind, klicken Sie das Häkchen Read and accept.

Illustr. 3-6 Installation App Windows 3/7

Wenn Sie die Installationseinstellungen konfigurieren wollen, klicken Sie auf Custom options.

Illustr. 3-7 Installation App Windows 4/7

Dadurch können Sie den Installationspfad (**Browse**), die Desktop-Verknüpfung (**Create Shortcut**) und die Schnellstart-Verknüpfung (**Add to quick launch**) konfigurieren. Der voreingestellte Installationspfad ist: C:\Users\{User Name}\AppData\Roaming\JAKA.

Illustr. 3-8 Installation App Windows 5/7

Klicken Sie auf Install, um die Installation zu starten.

Illustr. 3-9 Installation App Windows 6/7

Wenn der Installationsvorgang abgeschlossen ist, klicken Sie auf **Finish**, um die Installation abzuschließen. Durch Auswählen der Häkchen **Run JAKA** oder **JAKA official website** (<u>www.jakarobotics.com</u>) können Sie die App sofort öffnen bzw. die JAKA-Website besuchen.

Illustr. 3-10 Installation App Windows 7/7

3.4.3 Deinstallation der JAKA-App auf Android-Endgeräten

Um die JAKA-App auf Android-Endgeräten zu deinstallieren, befolgen Sie die folgenden Schritte:

- 1) Drücken und halten Sie das JAKA-App-Symbol in der App-Liste oder auf dem Startbildschirm gedrückt.
- Tippen Sie auf Deinstallieren oder Ziehen Sie die App auf den Deinstallationsbereich, der auf dem Bildschirm erscheint.
- 3) Tippen Sie auf der Bestätigungsanforderung **OK** zum Deinstallieren der App.

3.4.4 Deinstallation der JAKA-App auf Windows-Endgeräten

- 1) Beenden Sie die JAKA-App.
- 2) Gehen Sie auf **Start** oder drücken Sie die **Windows-Taste** auf der Tastatur. Klicken Sie auf **Einstellungen** und dann auf **Apps**.
- Suchen Sie in der Liste der Apps die JAKA-App und klicken Sie auf Deinstallieren. Es erscheint ein Fenster als Aufforderungsbestätigung. Klicken Sie Ja, um den Prozess abzuschließen.

4 Software Einführung

4.1 Startseite

4.1.1 Beschreibung Interface

Illustr. 4-1 Interface

Das JAKA-App-Interface ist in folgende drei Teile gegliedert:

Menüleiste: enthält Verwaltungs- und Einstellungsoptionen für den Schaltschrank, den Roboter und die Software. Die Funktionsmöglichkeiten sind das Herunterfahren des Schaltschranks, die App-Einstellungen, die Robotereinstellungen, die Schaltschrankeinstellungen, das Verbinden des Roboters, die Roboteranzeige, der Wechsel zwischen Simulationsroboter und dem echten Roboter, der Sicherheitsstatus usw.

Schaltleiste: enthält die Schaltfläche zum Einschalten des Roboters und die Schaltfläche zum Aktivieren des Roboters.

Funktionsleiste: bietet Optionen zum Programmieren des Roboters, der manuellen Roboterbewegung, Steuerung der E/A-Schnittstellen und das Informationsmonitoring.

ANMERKUNG

Das App-Anzeigenfenster kann auf Android-Endgeräten nicht verkleinert bzw. vergrößert werden.

Δ

4.1.2 Hilfe

Um bei der Bedienung der JAKA-App Hilfe zu erhalten, klicken Sie am oberen rechten Rand der JAKA-App-Homepage die **Help**-Option ⁽²⁾. Bei der erstmaligen Nutzung der JAKA-App empfehlen wir Ihnen die Help-Option in Anspruch zu nehmen.

Illustr. 4-2 Hilfe

4.2 Interface-Funktionen

Die JAKA-App ist eine Software, mit der Sie den Roboter anschließen/steuern, die Parameter des Roboters einstellen und das Log des Roboters auslesen können. Dazu können die E/A-Schnittstellen verwaltet werden und der Zustand des Roboters überwacht werden.

4.2.1 Roboterverbindung

Mit der JAKA-App können Sie mehrere Roboter gleichzeitig in der App verwalten. In der App kann das Netzwerk des Gerätes, auf dem die JAKA-App installiert ist, mit dem Netzwerk des Schaltschranks ausgetauscht werden. Der Standardname dieses Netzwerks ist die Serien-ID des Schaltschranks. Die untere Schnittstelle des Schaltschranks kann per Kabel mit einem neuen Netzwerk verbunden werden. Der Roboter kann an dieses neue Netzwerk verbunden werden. Klicken Sie auf die Schaltfläche **Disconnected** in der Funktionsleiste und wählen Sie den Roboter aus, den Sie verbinden wollen. Anschließend erscheint ein Login-Fenster. Nachdem Sie das Passwort eingegeben haben, klicken Sie auf **Connect Robot**.

ANMERKUNG

Um den Schaltschrank an ein externes Netzwerk zu verbinden, muss die IP-Adresse konfiguriert werden. Siehe dazu 5.1.2 Netzwerkeinstellungen.

Im Login-Fenster können Sie zwischen drei verschiedenen Rollen wählen: Bediener, Techniker oder Administrator.

Nur wenn der Roboter nicht in Betrieb ist, kann der Administrator oder Techniker die Systemeinstellungen, Betriebseinstellungen, Sicherheitseinstellungen, Programmeinstellungen, Hardware- und Kommunikationseinstellungen am Roboter verändern. Die einzelnen Rollen haben folgende Befugnisse:

- **Bediener**: kann das Roboterprogramm starten/anhalten, den Roboter einschalten/ausschalten und die Log-Datei auslesen und den Roboterstatus überwachen. Das voreingestellte Default-Passwort ist: 0.
- Techniker: kann das Roboterprogramm bearbeiten (und Einstellungen, welche zur Programmbearbeitung benötigt werden). Er kann Befugnisse des Bedieners bearbeiten. Das voreingestellte Default-Passwort ist: 0000.
- Administrator: kann alle Funktionen der Software nutzen. Das voreingestellte Default-Passwort ist: jakazuadmin.

Um die Informationssicherheit zu gewährleisten, ändern Sie die voreingestellten Default-Passwörter, sobald der Roboter zum ersten Mal verbunden ist (siehe Anhang A Benutzermanagement). Die verschiedenen Befugnisse der einzelnen Nutzerrollen sind in Anhang A detailliert dargestellt. Falls mehr als ein Roboter mit dem LAN (lokales Netzwerk) verbunden ist, zeigt die App-Interface alle abgerufenen Roboterinformationen im LAN an. Mit einem Klick auf das III Symbol kann die Reihenfolge der Roboter in der Liste verändert werden (sortieren nach ID, Roboternamen, Version, Status). Wenn die Informationen des Roboters, zu dem Sie eine Verbindung herstellen wollen, nicht in der App angezeigt werden, überprüfen Sie, ob die Funktion **Show all** (alle anzeigen) im Roboterverbindungsinterface aktiviert ist. Um das Verbindungsproblem zu beheben, klicken Sie 🕐 im oberen rechten Rand des Fensters. Wenn das Robotersystem nicht normal funktioniert, wird das 🚱 Symbol vor der Verbindung mit dem Roboterinterface und die Roboter-ID angezeigt. Im Roboterstatus erscheint dann die Meldung **Error** (Fehler).

JAKA Coboπ			Sir	nulation Off S	중ettings Log	(?) Help	Signal Disconnect	•••
	Connect Robot					×	<	
	Current connection: No	ne		Car	nnot find the robo	t 🥐		
	Robot ID	↓ Robot name	Robot IP	I Controller version	↓ State			
1	Sec. 207250099	JAKA_Doc	192.168.88.134	1.7.1_35_rc_X64	Disconnected	ᢙ	H	
	Pro16100199	happyNewYear	172.30.1.142	1.7.1_32_rc_X64	Occupied	ᢙ	19	
	> Zu7250001	LiangheRobot	172.30.3.92	1.7.1_19_X64	Occupied	æ	1	
JAKA Zu								
97 0. 97 C. Bardel -								
	Show all				Offline cor	nnection		
C:/ Programming	Manual Op	eration	JAKA		878 1/0		Monitoring	i

Illustr. 4-3 Roboterverbindung

ANMERKUNG

- Wenn die Funktion Show all (alle anzeigen) nicht aktiviert ist, wird nur der Roboter angezeigt, der mit der App-Version übereinstimmt. Wenn die Show all (alle anzeigen) Funktion aktiviert ist, werden alle Roboter im lokalen Netzwerk (LAN) angezeigt, einschließlich Roboter mit nicht übereinstimmenden Versionen und Roboter mit fehlerhaften Verbindungsstatus.
- Falls ein Roboter mit einem fehlerhaften Verbindungsstatus im App-Interface erscheint, kontaktieren Sie einen JAKA-Techniker.
- Der verbundene Roboter wird oben in der Liste angezeigt und ist durch die optionalen Sortierregeln bestimmt. Die voreingestellte Sortieroption ist auf die Roboter-ID gestützt.

4.2.1.1 Roboter-Login

Verbinden Sie zunächst die JAKA-App mit dem selben lokalen Netzwerk wie den Roboter. Auf der Homepage der JAKA-App klicken Sie oben rechts auf **Disconnected** . Das Roboterverbindungsinterface öffnet in einem neuen Fenster. Alle Roboterinformationen (Roboter-ID, Name, IP-Adresse, Schaltschrankversion und Status) im lokalen Netzwerk werden angezeigt. Wählen Sie durch einen Klick den gewünschten Roboter aus der angezeigten Liste aus, um diesen zu verbinden. Das Login-Fenster öffnet sich. Wählen Sie die Benutzerrolle zur Anmeldung aus, geben Sie das Passwort ein und klicken Sie auf **Connect the Robot** (Roboter verbinden).

JAKA Coboπ			Jation Sin	() 於 Off Settings	Log Help	III Signal JA	9889 e149 KA_Doc	
	Connect Robot					\times		
*-	Current connection: JA	AKA_Doc			Discon	nect		
	Robot ID	Robot name	Robot IP	1 Controller version	State			
5	>> Zu7250099	JAKA_Doc	192.168.88.134	1.7.1_35_rc_X64	Connected	Ð	H	
0							17	
							1	
Q								
JAKA Zu ^a								
	Show all							
	-				0.00			
		9	JAKA		818			í
Programming	Manual O	peration	Home		1/0		Monitoring	

Illustr. 4-4 Roboter-Login

4.2.1.2 Offline-Verbindung

Die JAKA-App unterstützt eine Offline-Verbindungsfunktion. Diese wird hautsächlich für eine virtuelle Roboterverbindung, simulierte Nutzererfahrungen und das Lernen an Robotern verwendet. Klicken Sie auf der JAKA-App-Homepage auf **Disconnected** \exists . Das Roboterverbindungsinterface öffnet sich und dort finden Sie am unteren rechten Rand des Fensters die Schaltfläche **Offline Connection** (Offline-Verbindung). Klicken Sie auf die Schaltfläche, um das Offline-Verbindungsinterface zu öffnen. Wählen Sie die Nutzerrolle, geben Sie das Passwort und die Roboteradresse ein.

JAKA Coboπ		Julation Sin Off	양가 토 ? Settings Log Help 5	ignal inected D
	Connect Robot		\times	
JAKA Zu ⁴		Username Administrator Password Please input password Robot address Please input the robot address Connect Robot		
			Normal connection	
C:/ Programming	Manual Operation	JAKA		Monitoring

Illustr. 4-5 Roboter-Login

4.2.1.3 Offline-Upgrade

Die JAKA-App unterstützt Versionsupgrades. Die Roboterversion kann auch aktualisiert werden, wenn der Roboter nicht verbunden ist. Klicken Sie auf der JAKA-App-Homepage oben rechts auf Disconnected. Gehen Sie auf dem Roboterverbindungs-Interface auf die Schaltfläche Upgrade. Geben Sie das Administratorpasswort ein (Default: jakazuadmin), wählen Sie die Upgrade-Datei aus und klicken Sie auf die Schaltfläche Upgrade, um das Upgrade durchzuführen.

JAKA Coboπ				Simulation Off S	6. Log Help	Signal ed Disconi	
	Connect Robot				2	×	
	Current connection: No	one		Car	nnot find the robot ?		
	Robot ID	∤ Robot name	Robot IP	1 Controller version	State		
S.	Sec. 207250099	JAKA_Doc	192.168.88.13	4 1.7.1_35_rc_X64	Disconnected 🕢		
0						17	
~							
R							
JAKA Zu ^e							
	Show all				Offline connection		
C:/	R	3	JAKA		818	~~	(i)
Programming	Manual Or	peration	Home		I/O	Monitoring	ECC.

Illustr. 4-6 Roboter-Upgrade 1/4

JAKA Coboπ			Simulation Off	양강 토 Settings Log	Help Signal nnected D	
	Upgrade Interface				×	
JAKA ZU [®] 3	Upgrade file:	Click here to select the file	Please disable an	d power off the robot	Zu® 18	
				0.00		
C:/ Programming	Manual Operation	JAKA Home		"vo 818	Monitoring	(i)

Illustr. 4-7 Roboter-Upgrade 2/4

Wenn der Roboter angeschlossen ist, deaktivieren Sie ihn und schalten Sie ihn aus. Klicken Sie auf der JAKA-App-Homepage auf ² und dann auf ² Klicken Sie anschließend auf Upgrade auf der rechten Seite des angeschlossenen Roboters, um zum Version Upgrade Interface zu gelangen und das Upgrade durchführen zu können (siehe 5.1.4 Versionsupgrade).

JAKA Coboπ		Simulation Off Set	tings Log Help Signal	9889 9889 JAKA_Doc
	Connect Robot			×
	Current connection: JAKA_Doc		Disconnect	
	Robot ID Robot name	Robot IP ↓ Controll version	ler State	
5	Zu7250099 JAKA_Doc	192.168.88.134 1.7.1_35_	rc_X64 Connected 🔂	
	📡 Zu7250099 ZTZ	172.30.3.140 1.7.1_34_	rc_X64 Disconnected	19
JAKA ZU	Show all			
C:/ Programming	Manual Operation	JAKA Home	808 1/0	Monitoring (i)

Illustr. 4-8 Roboter-Upgrade 3/4

<				Simulation Log Signal	f14f JAKA_Doc_ 1898
System Settings	Operation Se	ettings 🧭 Safety	y Settings 💦 P	rogram Settings	Hardware & Communication
Initial Settings	Network Settings	AddOn	Version Upgrade	System Backup	User Management
	Upgrade file:	Click here to select the	file	6	
			Please disable and	I power off the robot	
			^		

Illustr. 4-9 Roboter-Upgrade 4/4

4.2.2 Verbindungsinformationen überprüfen

Wenn Sie Informationen des aktuell angeschlossenen Roboters überprüfen wollen, klicken Sie auf ² in der oberen rechten Ecke und klicken Sie anschließend auf ¹, um das Roboterinterface zu öffnen. Wenn der Roboter offline verbunden ist, wird die Anzeige mit Verbindungsinformationen nicht unterstützt.

Illustr. 4-10 Verbindungsinformationen

4.2.3 Schaltschrank ausschalten

Den Schaltschrank können Sie durch das klicken auf die ⁽¹⁾ Schaltfläche (**Off**) in der oberen rechten Ecke der JAKA-App-Homepage ausschalten. Der Schaltschrank kann auch durch den Bediengriff ausgeschaltet werden, in dem Sie die **Ein/Aus**-Taste drücken und länger als drei Sekunden gedrückt halten.

Illustr. 4-11 Schaltschrank ausschalten

- Core

ANMERKUNG

Trennen Sie die Stromversorgung nicht sofort nach dem Ausschalten des Schaltschranks. Warten Sie bis das Licht des Bediengriffs erloschen ist und warten Sie zusätzlich fünf bis zehn Sekunden, bevor Sie die Stromversorgung unterbrechen.

4.2.4 Roboter aktivieren/deaktivieren

Bevor Sie den Roboter einschalten, müssen Sie zuerst den Schaltschrank einschalten. Drücken Sie die **Ein/Aus**-Taste und halten Sie diese für ca. eine Sekunde lang gedrückt, um den Schaltschrank einzuschalten. Nur wenn der Schaltschrank eingeschaltet ist (das Licht am Bediengriff blinkt blau) können Sie den Roboter mit dem Stromnetz verbinden, anschließend einschalten oder aktivieren. Klicken Sie zuerst auf die Schaltfläche **Power On Robot**. Wenn die ringförmige Leuchte am Roboterflansch oder am Roboterflansch der Roboteranzeige in der JAKA-App-Homepage blau blinkt, bedeutet es, dass der Roboter erfolgreich eingeschaltet ist. Klicken Sie anschließend auf die Schaltfläche **Enable Robot**. Wenn die ringförmige Leuchte am Roboterflansch oder am Roboterflansch der Roboter sit. Klicken Sie anschließend auf die Schaltfläche **Enable Robot**. Wenn die ringförmige Leuchte am Roboterflansch oder am Roboterflansch der Roboteranzeige in der JAKA-App-Homepage grün blinkt, bedeutet es, dass der Roboter am Roboterflansch der Roboteranzeige in der JAKA-App-Homepage grün blinkt, bedeutet es, dass der Roboter am Roboterflansch der Roboteranzeige in der JAKA-App-Homepage grün blinkt, bedeutet es, dass der Roboter erfolgreich aktiviert ist.

Illustr. 4-12 Roboter einschalten

Illustr. 4-13 Roboter aktivieren

Klicken Sie zuerst auf die Schaltfläche **Disable Robot**. Wenn die ringförmige Leuchte am Roboterflansch oder am Roboterflansch des Roboters in der JAKA-App-Homepage blau blinkt, bedeutet es, dass der Roboter erfolgreich deaktiviert ist. Klicken Sie anschließend auf die Schaltfläche **Power Off Robot**. Wenn die ringförmige Leuchte am Roboterflansch oder am Roboterflansch der Roboteranzeige in der JAKA-App-Homepage weiß blinkt oder erlischt, bedeutet es, dass der Roboter erfolgreich ausgeschaltet ist.

ANMERKUNG

Schalten Sie den Schaltschrank ein, bevor Sie den Roboter einschalten. Schalten Sie den Roboter ein, bevor Sie ihn aktivieren. Deaktivieren Sie den Roboter, bevor Sie ihn ausschalten. Der Roboter darf keine Programme am Laufen haben, bevor er deaktiviert und ausgeschaltet wird.

VORSICHT

Es ist untersagt den Schaltschrank auszuschalten, wenn der Roboter immer noch eingeschaltet und aktiviert ist. Dadurch kann es zu Schäden am Roboter kommen. Sie müssen zuerst den Roboter deaktivieren und ausschalten, bevor Sie den Schaltschrank ausschalten.

4.2.5 Signal

Am oberen rechten Rand der JAKA-App-Homepage befindet sich das **Signal**-Symbol III . Wenn Sie den Roboter mit Wi-Fi verbinden, können Sie durch Anklicken dieses Symbols den Netzwerkstatus überprüfen.

4.2.6 Roboter Log-Informationen

Die Log-Informationen sind eine Aufzeichnung relevanter Informationen, welche bei der Aufzeichnung eines Ereignisses während des Roboterbetriebs ausgelöst werden. Diese werden in Informationen, Warnungen und Fehler unterteilt. Bei der Speicherung von Betriebsdaten und der Fehlersuche sind Log-Informationen sehr wichtig.

Illustr. 4-14 Log

Falls während des Roboterbetriebs eine Fehlermeldung auftritt, können mit Hilfe der Log-Informationen Fehler ausfindig gemacht werden. Sollte der Fehler nicht ausfindig gemacht werden können, haben Sie die Möglichkeit das Problem, durch Kontaktaufnahme mit JAKA-Technikern und das Übersenden der Log-Informationen, zu lösen. Um die Log-Informationen einzusehen, klicken Sie auf das **Log**-Symbol im am oberen rechten Rand der JAKA-App-Homepage. Klicken Sie anschließend auf das **Refresh**-Symbol im, um so den aktuellen Informationstand des Logs aufzurufen. Wenn zu viele Log-Informationen vorhanden sind, können Sie durch Klicken auf im den Zeitraum der gewünschten Log-Informationen filtern. Sie können zum Filtern Schlüsselwörter eingeben und auf im klicken, um die Log-Informationen zu filtern. Alternativ können Sie auch auf im klicken, um die aktuell angezeigten Log-Informationen zu löschen.

JAKA Coboπ		alation Sir Off	땷 💼 ⑦ Settings Log Help	Signat JAKA_Doc
	Log		\Leftrightarrow >	<
JAKA ZU [®] 3	 ✔All ✔Info ♥ Please set the start time Key words ⟨Info0X10f0002]The robot is po ⟨Info0X10f0004]The robot is en ⟨Info0X10f0003]The robot is po ⟨Info0X10f0003]The robot is po ⟨Info0X10f0003]The robot is po ⟨Info0X10f0003]The robot is po ⟨Info0X10f0004]The robot is po 	Warning Warning Wered off wered off wered on abled	○ Error ○ set the end time ✓ ② ✓ ▲ 2024/4/18 15:08:59 2024/4/18 15:10:40 2024/4/18 15:10:42 2024/4/18 15:13:11 2024/4/18 15:13:13 2024/4/18 15:13:13 2024/4/18 15:13:13 2024/4/18 15:13:13 2024/4/18 15:13:13 2024/4/18 15:13:13	Zu ^e 18
C:/ Programming	Manual Operation	JAKA	808 vo	Monitoring

Illustr. 4-15 Log Filter

Klicken Sie auf den Inhalt einer Log-Information (Information, Warnung und Fehler) in dem Feld der einzelnen Log-Informationen, um eine detaillierte Beschreibung der aktuellen Log-Information angezeigt zu bekommen.

Illustr. 4-16 Log Detail

Der Log-Befehl in der Programmierschnittstelle kann Log-Informationen senden und überprüfen.

4.2.6.1 Information

Wenn sich der Zustand des Roboters ändert, wird die Änderungsinformation gespeichert und alle Änderungen des Roboterzustands können anhand dieser gespeicherten Informationen nachvollzogen werden. Diese Informationen dienen dazu, um überprüfen zu können, ob der Roboterzustand erfolgreich umgeschaltet wurde oder ob der Roboter innerhalb eines bestimmten Zeitraums einen abnormalen Zustand aufweist.

4.2.6.2 Warnung

Eine Warnung ist eine Meldung, die erscheint, wenn die JAKA-App falsch bedient wird oder wenn der Roboter einen abnormalen Zustand aufweist. Die Meldung erscheint in Form eines aufpoppenden Warnung-Fensters. Die Warnungsinformation wird als Log-Eintrag gespeichert.

4.2.6.3 Fehler

Ein Fehler ist eine Meldung, die erscheint, wenn die JAKA-App falsch bedient wird oder wenn der Roboter einen abnormalen Zustand aufweist. Die Meldung erscheint in Form eines aufpoppenden Fehler-Fensters und der Roboter wird gestoppt oder deaktiviert. Die Warnungsinformation wird als Log-Eintrag gespeichert.

4.2.7 Wechseln zwischen Roboter und Robotersimulation

Die Schaltfläche **Real Robot/Simulation** aktiviert die Simulationsfunktion und versetzt alle Robotermodelle in den Simulationsmodus. Wechseln Sie den Roboter über die Schaltfläche **Simulation** III auf der JAKA-App-Homepage. Bei der Simulationsfunktion handelt es sich um eine Hardware-in-the-Loop-Simulation, für die eine echte Steuerung erforderlich ist. Sie können, wenn der Roboter sich im Simulationsmodus befindet, verschiedene Robotermodelle für die Simulation auswählen, indem Sie die **Manual Operation**-Schaltfläche anklicken und das Robotermodel in der Dropdown-Liste auswählen.

ANMERKUNG

Der Roboter muss ausgeschaltet sein und im deaktivierten Zustand, bevor Sie zwischen Simulation und realen Roboter auswählen können. Wenn Sie zwischen den einzelnen Robotermodellen in den Simulationsmodus wechseln, sollte der Roboter ausgeschaltet und deaktiviert sein. Der Betrieb im Simulationsmodus hat keine Auswirkungen auf den realen Roboter. Die im Simulationsmodus konfigurierten Parameter bleiben erhalten, auch wenn in den realen Robotermodus zurückgeschaltet wird.

Illustr. 4-17 Dropdown

4.2.8 Sicherheitsprüfsumme (Safety Checksum)

Die Sicherheitsprüfsumme ist eine achtstellige Zahlen- und Buchstabenfolge, die dazu dient, die Sicherheitsinformationen des Roboters zu überprüfen (Achseninformationen, Sicherheitszustandsausgabe, Standardprogramm, Sicherheits-E/A, Bewegungsbegrenzungen, Begrenzungen der Achsenbewegungen und Roboterausrichtung). Sobald die in Klammern aufgezählten Sicherheitsparameter geändert werden, ändert sich auch die Sicherheitsprüfsumme und wird in einem flüchtig aufpoppenden Fenster in der JAKA-App angezeigt. Die Aufzeichnung der Änderungen der Sicherheitsprüfsumme können Sie unter Log > Informationen einsehen.

Illustr. 4-18 Sicherheitsprüfsumme

4.2.9 Überwachung des Roboterzustands

Sie können in der JAKA-App alle relevanten Informationen des Roboter- und Schaltschrankzustands überwachen. Sie bekommen diese Informationen, indem Sie in der JAKA-App-Homepage auf die **Monitoring** Schaltfläche klicken. Im Informationsfeld des Schaltschranks kann die Temperatur des Schaltschranks überwacht werden. Im Informationsfeld der Roboterachsen können Sie Informationen zu Stromstärke, Spannung, Temperatur, Drehmoment, Grenzwertstatus und Geschwindigkeitsgrenzwert von Achse 1 bis zur Achse 6 einsehen.

Illustr. 4-19 Überwachung Roboterzustand

Im Informationsfeld der Roboterachsen können Sie mit einem Klick auf die **Percentage** Schaltfläche relevante Informationen der Roboterachsen in Prozentwerten anzeigen lassen. Der Prozentwert zeigt das Verhältnis der aktuellen Werte der Roboterachsen zum Status, welcher einen alarmierenden Zustand darstellen würde. Durch die prozentuelle Überwachung der Informationen, können Sie einsehen, ob die Roboterachsen übermäßig beansprucht werden. Falls der Prozentwert der einzelnen Parameter sich an 100% nähert, wird empfohlen die Last des Roboters zu verringern oder die Geschwindigkeit zu reduzieren, um eine sichere Nutzung zu gewährleisten. Über das **Safety State Output** Informationsfeld kann der Sicherheitszustand des Roboters überwacht werden. Wenn sich der Roboter im Sicherheitszustand befindet, leuchtet eine entsprechende Anzeige auf.

<							imulation :	ک رک Settings	Log	III Signal	JAKA_Doc_	b50 992
	Control cab	inet			Real-Tin	ne Display			1			
Contro	l cabinet te	mperature			0.00	00 °c		a c		•		
Joint Infor	mation	Safety State	2///	7777	Percen	tage						
	Current (A)	Voltage (V) T	emperature (°C) Torque (Nm)	Limit state	Speed limit state						
Joint 1	0.000	0.000	0.000	-0.022		•		-				
Joint 2	0.000	0.000	0.000	28.405	•	•						
Joint 3	0.000	0.000	0.000	1.217	•	•						
Joint 4	0.000	0.000	0.000	2.226	•	•						
loint E	0.000	0.000	0.000	-0.495	•	•						
JUILT												

Illustr. 4-20 Überwachung Roboterzustand Prozentwert

Klicken Sie auf das **Real Time Display** Feld, um das zu überwachende Gerät auszuwählen und der Zustand des überwachten Objekts wird in Echtzeit angezeigt.

4.2.10 Versionsinformationen

Wenn die JAKA-App mit dem Roboter verbunden ist, können Sie die Versionsinformationen der dazugehörigen Software, des Roboters und Schaltschranks überprüfen. Sie können die Spracheinstellungen und Lautstärke verändern, den Kundenservice kontaktieren, die offizielle Website besuchen und Updates installieren.

Illustr. 4-21 Versionsinformation

		[]] (¹) = 袋	Ē ?	ull 🌮 9889
JAKA Cobo π	About		\times	Signal JAKA_Doc
		JAKA		they.
	Language:	English		
	Volume:	()	
	Soft keyboard:	iiiii Disabled		
	App version:	1.7.1.37		
	Servo version:	0.0 TIO-0.0_0.0		
	SCB version:	0.0.0		A
No.	Controller version:	1.7.1_35_rc_X64_cab2_1		
JAKA Zu [®] 3	Robot number:	Zu7250099		JAKA Zu [®] 18
	Official website:	https://www.jaka.com		
	WeChat customer service:	Open WeChat QR code		
	Software update:	Check for update Auto update		
C:/				
Programming	Manual Operation	Home	I/O	Monitoring

Illustr. 4-22 Versionsinformation Einstellungen

4.2.10.1 Spracheinstellungen

Die JAKA-App unterstützt folgende Spracheinstellungen: Chinesisch, Englisch, Französisch und Japanisch. Öffnen Sie die JAKA-App und klicken Sie auf der JAKA-App-Homepage auf ⁽¹⁾ (**About**) in der unteren rechten Ecke und verändern Sie die Sprache in dem **Language**-Dropdown-Menü.

4.2.10.2 Version

Laden Sie die JAKA-App hoch, verbinden Sie den Roboter und klicken Sie auf der JAKA-App-Homepage auf ⁽¹⁾ (**About**) in der unteren rechten Ecke. Anschließend erscheint ein neues Fenster mit allen relevanten Informationen wie JAKA-App-Version, Servo-Version, SBC-Version, Schaltschrank-Version und Roboter-Seriennummer.

ANMERKUNG Sie müssen den Roboter einschalten, bevor Sie die Servo-Version einsehen können.

4.2.10.3 Kundenservice

Mit der JAKA-App kann der JAKA-Kundenservice kontaktiert werden. Laden Sie die JAKA-App hoch und

klicken Sie auf der JAKA-App-Homepage auf ⁽¹⁾ (**About**) in der unteren rechten Ecke. Klicken Sie auf **Open WeChat**, um technische Unterstützung zu erhalten.

Illustr. 4-23 Kundenservice

Alternativ können Sie den Kundenservice auch per E-Mail erreichen, indem Sie eine E-Mail an: <u>support.eu@jaka.mail</u> schreiben.

4.2.10.4 Updates

In der JAKA-App können Sie die aktuelle Softwareversion einsehen. Laden Sie die JAKA-App hoch und klicken Sie auf der JAKA-App-Homepage auf (**(About)**) in der unteren rechten Ecke und klicken Sie anschließend auf **Check for update**, um die Software-Update-Schnittstelle aufzurufen. Sie können unter Type im Dropdown-Menü zwischen der aktuellen Softwareversion oder der entsprechenden unterstützten Version wählen. Geben Sie die Schaltschrank-ID und die Roboter-Seriennummer ein. Klicken Sie anschließend auf **Search**, um die Suche zu starten. Klicken Sie auf **Version Information** (**)** rechts neben der gewünschten Version, um den Update-Umfang der dazugehörigen Version einzusehen. Klicken Sie auf **Download** rechts neben der dazugehörigen Version, um die Installationsdatei der entsprechenden Softwareversion auf Ihr Gerät herunterzuladen.

JAKA Cobo π	Software update		□ () 袋		9889 • it JAKA_Doc = 149	•••
7	Type: Latest versio	n Cor	ntroller version:	Search		
	Version Controller	Platform	Date	•		
	1.5.14_20	Default	2024-01-12	(i) 😃]]]	
Ô.	1.5.14.20	x86(win 32)	2024-01-26	(i) 😃		
JAKA Zu [®] 3	1.5.14.20 1.5.14.20	x64(win 64) andriod	2024-01-26 2024-01-26	(i) ↓ (i) ↓	Zu [®] 18	
C:/ Programming	Manual Operation	Home	~	NO ANA	Monitoring	i

Illustr. 4-24 Update

ANMERKUNG

Um die Software aktualisieren zu können, muss das Gerät, an dem das Update durchgeführt wird, mit dem Internet verbunden sein. Wenn die aktuelle Software aktualisiert wird, muss die Version des Schaltschranks (Schaltschrank-ID) nicht eingetragen werden, anders als bei älteren Software-Versionen. Die Schaltschrank-ID finden Sie in der unteren rechten Ecke des Schaltschrankgehäuses. Die Roboter-Seriennummer befindet sich am Robotersockel. Wenn die Option **Auto update** ausgewählt ist, sucht der Roboter automatisch nach Updates, sobald er eingeschaltet ist. Falls ein neues Update verfügbar ist, erscheint ein Popup-Fenster am Display.

5 Einstellungen

Um in die Einstellungen zu gelangen, klicken Sie in der Menüleiste auf **Settings**. Die Einstellung sind in fünf Kategorien unterteilt: Systemeinstellungen, Betriebseinstellungen, Sicherheitseinstellungen, Programmeinstellungen, Hardware und Kommunikation.

5.1 Systemeinstellungen

5.1.1 Grundeinstellungen

Die Grundeinstellungen dienen dazu, den Roboternamen und die Systemuhrzeit und Datum einzustellen. Um die Grundeinstellungen zu modifizieren, klicken Sie auf **Settings > System Settings > Initial Settings**. Der Robotername erscheint in dem Feld **Robot name settings**. Tragen Sie den gewünschten Roboternamen ein und klicken Sie anschließend auf **OK**. In dem Feld **Time** stellen Sie das Datum und die Zeit ein, in dem Sie im Dropdown-Menü die gewünschten Daten auswählen. Warten Sie drei Sekunden lange und klicken Sie anschließend auf **OK**.

<	_		imulation Log Sign	f 14 f al JAKA_Doc
System Settings	Operation Settings	Safety Settings	Program Settings	Hardware & Communication
Initial Settings	Network Settings	AddOn Version	n Upgrade System Backup	User Management
Robot name se	ettings: JAKA_Doc Time: 2024/3/27 03 : 42 :	49 🗸	Cancel	ОК
		^		
		\sim		

5.1.2 Netzwerkeinstellungen

Im Netzwerk-Interface können Sie einstellen, wie der Roboter die IP-Adresse bezieht. Standardmäßig bezieht der Roboter die IP-Adresse automatisch. Falls Sie die IP-Adresse verändern müssen, stellen Sie sicher, dass alle angeschlossenen Geräte, die über das Netzwerk mit dem Roboter kommunizieren, sich im selben Subnetz befinden. Nach dem Einstellen der IP-Adresse klicken Sie OK und die Netzwerkkonfiguration wird zum Neustart aufgefordert. Ein Pop-Up-Fenster erscheint, um die Verbindung zu trennen.

ANMERKUNG

Die IP-Adresse stellen Sie ein, wenn der Roboter ausgeschaltet und deaktiviert ist.

Der Netzwerkanschluss an der Vorderseite wird wie folgt konfiguriert: Das Standard-Netzwerksegment ist 10.5.5.x. Bei der Verwendung dieses Anschlusses muss die IP-Adresse des angeschlossenen Geräts im Bereich von 10.5.5.101 bis 10.5.5.254 konfiguriert sein. Alternativ können Sie das Gerät mit einer dynamischen IP-Adresse konfigurieren.

Der Netzwerkanschluss an der Unterseite des Schaltschranks wird wie folgt konfiguriert: standardmäßig ist die IP-Adresse dynamisch. Die IP-Adresse kann nicht im Bereich von 10.5.5.x liegen. Sollte diese in dem Bereich konfiguriert werden, erscheint die Meldung The segment is disabled.

Die werkseitige Standardkonfiguration des LAN1-Netzwerkanschlusses des MiniCab ist 10.5.5.x. Bei der Verwendung dieses Anschlusses muss die IP-Adresse des angeschlossenen Geräts im Bereich von 10.5.5.101 bis 10.5.5.254 konfiguriert sein. Alternativ können Sie das Gerät mit einer dynamischen IP-Adresse konfigurieren. Der LAN2-Netzwerkanschluss bezieht seine IP-Adresse automatisch. Die IP-Adresse kann nicht im Bereich von 10.5.5.x liegen. Sollte diese in dem Bereich konfiguriert werden, erscheint die Meldung The segment is disabled. Für das CAB 2.1 gelten benutzerdefinierte IP-Einstellungen nur für die Einstellungen des unteren Netzwerkanschlusses. Für das MiniCab gelten die benutzerdefinierten IP-Einstellungen nur für den LAN2-Netzwerkanschluss.

5.1.3 Add-On

Die JAKA-App unterstützt Add-ons mit denen zusätzliche Funktionen für spezifische Kundenanforderungen entwickelt werden können.

System Settings	Operation Se	ttings 📿 Safety Sett	tings C Program	Settings	Hardware &
nitial Settings	Network Settings	AddOn	Version Upgrade Sv	stem Backup	User Manageme
and see in ge					C ⊕ 0
Program Name	Version	Description	Running Port	State	Options
System_AddOn	1.4.3	System Fuction	10006		愈
Palletizers	1.5.3.6.CN.Beta	"Palletizing process package	•" 10007		
JK_Welding_Package	3.0	Welding Package	10008		

Illustr. 5-2 Add-on

🕀 Add-on hinzufügen

Aktualisierung der Add-on-Liste

- Add-on-Anweisung überprüfen
- Add-on-Konfigurationsschnittstelle überprüfen (keine Bearbeitung möglich)
- U Add-on-Konfigurationsinformationen überprüfen
- I Website mit weiteren Add-on-Anweisungen besuchen (derzeit nur in englischer Sprache verfügbar)
- Add-on-Menü anzeigen

Die Add-ons werden nur von x64 Schaltschränken unterstützt. Für mehr Informationen zu Add-ons kontaktieren Sie das technische Fachpersonal von JAKA.

5.1.4 Versionsupgrade

Sie können den Schaltschrank, die PSCB/SCB (Systemsteuerungsplatine) und Servo über die Versions-Upgrade-Schnittstelle aktualisieren. Folgende Reihenfolge muss beim Upgraden beachtet werden:

- 1) Schaltschrank-Upgrade
- 2) App-Upgrade
- 3) SCB-Upgrade
- 4) Servo-Upgrade

ANMERKUNG

Auch wenn das Upgrade von nur einer Komponente benötigt wird, muss die Reihenfolge eingehalten werden.

Befolgen Sie diese Schritte, um Upgrades durchzuführen:

- 1) Laden Sie das Upgrade-Paket auf Ihr lokales Endgerät herunter.
- Öffnen Sie die App und Verbinden Sie den Roboter, der mit dem Upgrade versehen werden soll. Stellen Sie sicher, dass der Roboter deaktiviert und ausgeschaltet ist.
- 3) Klicken Sie in der App auf Settings > System Settings > Version Upgrade. Klicken Sie auf Please select the file, wählen Sie die entsprechende Upgrade-Datei aus und klicken Sie auf die Schaltfläche Upload. Das Dateiformat endet auf .tar.gz (der Name der Upgrade-Datei kann nicht geändert werden).
- 4) Wenn Sie den Schaltschrank und Servo aktualisieren, wird der Schaltschrank automatisch neu gestartet. Nach dem Neustart wird das Upgrade abgeschlossen. Wenn die Systemsteuerungsplatine (SCB) aktualisiert wird, öffnet sich in der App ein Fenster mit dem Fortschritt des Upgrades. Der Schaltschrank wird nach dem Upgrade ausgeschaltet. Starten Sie den Schaltschrank anschließend, in dem Sie die Ein/Aus-Taste am Bediengriff drei bis fünf Sekunden lang drücken und gedrückt halten.

<				on Simulat Log Signal	f 1 4 f JAKA_Doc_ f 1 4 f
System Settings	(R) Operation	Settings 😡 Safety	Settings 💦 P	rogram Settings	Hardware & Communication
Initial Settings	Network Settings	AddOn	Version Upgrade	System Backup	User Management
	Upgrade file:	JKZUC1_7_1_29_rc.tar.gz	2	6	
			Please disable and	I power off the robot	
		~			

Illustr. 5-3 Versionsupgrade

Befolgen Sie diese Schritte, um alle Komponenten zu aktualisieren:

- 1) Laden Sie das Upgrade-Paket auf Ihr lokales Endgerät herunter.
- Öffnen Sie die App und Verbinden Sie den Roboter, der mit dem Upgrade versehen werden soll. Stellen Sie sicher, dass der Roboter deaktiviert und ausgeschaltet ist.
- 3) Klicken Sie in der App auf Settings > System Settings > Version Upgrade. Klicken Sie auf Please select the file, wählen Sie die All-in-One-Upgrade-Datei aus. Das Dateiformat endet auf .jaka (der Name der Upgrade-Datei kann nicht geändert werden).

ANMERKUNG

Wenn die ursprüngliche SCB-Version unter 02_50 und die PSCB-Version unter 02_00 ist, führen Sie das Upgrade nicht selbst durch. Wenden Sie sich dazu an das technische Fachpersonal von JAKA. Einzelheiten zu den Versionsinformationen finden Sie in Kapitel 4.2.10.2 Version.

5.1.5 System-Backup

Das System-Backup ermöglicht den Import, Export sowie die automatische Sicherung von Konfigurationsdateien.

Konfigurationsdateien sind benutzerdefinierte Konfigurationsparameter, welche der Benutzer bei der Verwendung des Roboters festlegt/verändert. Um die Konfigurationsdatei zu exportieren, klicken Sie auf **Export file**, wählen Sie den Speicherort und klicken Sie auf **OK**. Um eine Konfigurationsdatei zu importieren, klicken Sie auf **Import file**, wählen Sie die zu importierende Datei aus und klicken Sie auf **OK**.

ANMERKUNG

Wenn Sie Konfigurationsdateien importieren, stellen Sie sicher, dass die Schaltschrank-Versionen der zu importierenden Konfigurationsdateien gleich sind. Der Import von Konfigurationsdateien mit unterschiedlichen Schaltschrank-Versionen kann Fehler im System verursachen.

Wenn Sie die automatische Sicherung der Konfigurationsdateien einstellen, speichert die App, abhängig von der eingestellten Zeit der automatischen Sicherung, eine Sicherungskopie des aktuellen Programms. Der Name der Datei besteht aus dem Programmnamen + . + der Systemzeit zum Zeitpunkt des Speicherns. Klicken Sie in dem Programm-Bildschirm auf das DS Symbol und verändern Sie dann die Schaltfläche zur Überprüfung der Sicherungsdatei. Die Sicherungsdatei kann nicht direkt ausgeführt werden, daher müssen Sie die Sicherungsdatei als neue Datei speichern, bevor Sie diese ausführen.

					(B)
<			ala	ation Sin, Log Signal	f14f JAKA_Doc_ 1898
System Settings	(R) Operation Setting	gs 🦁 Safety S	ettings 💦 Pro	gram Settings	Hardware & Communication
Initial Settings	Network Settings	AddOn	Version Upgrade	System Backup	User Management
Import config	uration file: 🔀 Import file]			
Export config	uration file: 🗌 Controller	I/O name	Dynamic I/O	System variable	Safety zone
	Export file]			
Automa	atic backup: 🧿 Off				
	O 15 minutes	3			
	 30 minutes 	5			
	O 60 minutes	5			
		\sim	`		

Illustr. 5-4 System Backup

<		Run	(76%) Speed S	E Simulation Setting	gs Log	?) Help	III Signal	JAKA_Doc_	f14f 1898	
Move	Program List	_	_	F		≪0 0	×			+
646 1/O	Name		Date		Size	4				
Control	Doc_control		2024	1-03-26 02:39:4 1-03-26 02:33:3	32 30KB					
Calculate	Doc_Com		2024 2024	1-03-25 17:47:1 1-03-25 13:41:4	19 22KB					
Character	7890		2024	4-03-25 13:36:0	09 13KB					ن
Com	Doc_character		2024 2024	4-03-25 13:17:3 4-03-25 13:17:0	32 4KB 06 47KB					
88 Sub			2024	I-03-25 11:19:5	58 21KB					
Variable					Show backup	files 💽	2			
Extend		~						6	QE) (

Illustr. 5-5 Programmliste Backup

5.1.6 Benutzer-Management

Der Administrator kann das Passwort für verschiedene Benutzerrechte in den Einstellungen der Benutzerverwaltung ändern. Die Standardpasswörter für die verschiedenen Benutzerrollen sind:

- Administrator-Passwort: jakazuadmin
- Techniker-Passwort: 0000
- Bediener-Passwort: 0

ANMERKUNG

Diese Passwörter sind Standard-Passwörter. Bitte ändern Sie diese, sobald Sie die JAKA-App zum ersten Mal benutzen. Bewahren Sie die neu vergebenen persönlichen Passwörter gut auf. Sollten Sie Ihr Passwort vergessen, wenden Sie sich an das technische Fachpersonal von JAKA, um die Passwörter wiederherzustellen.

Rufen Sie die **Settings**-Oberfläche auf, wählen Sie **System settings**, klicken Sie auf **User mangement** und klicken Sie anschließend auf ^{III} und danach auf **OK**.

<					Simulation		🏷 f14f al JAKA_Doc
6	System Settings	(Repertion Se	ttings 🤯 Safety	y Settings	S Program	Settings	Hardware & Communication
Ini	tial Settings	Network Settings	AddOn	Version Up	grade Sy	stem Backup	User Management
	Adm	User				Modit	y Password
	Те	chnician					ľ
	0	perator					Ľ
			/				

5.2 Betriebseinstellungen

Bei der Bedienung des Roboters gibt es verschiedene Koordinatensysteme, wie das Weltkoordinatensystem, das Flanschkoordinatensystem, das Werkzeugkoordinatensystem und das Benutzerkoordinatensystem. Das Weltkoordinatensystem und das Flanschkoordinatensystem sind die Standardkoordinatensysteme. Das Werkzeug- und Benutzerkoordinatensystem sind benutzerdefinierte Koordinatensysteme. Alle verwenden die Rechte-Hand-Regel.

Illustr. 5-6 Benutzer-Management

Illustr. 5-7 Rechte-Hand-Regel

5.2.1 TCP-Einstellungen

Das TCP-Koordinatensystem ist ein Koordinatensystem mit dem TCP (Englisch: Tool Center Point; Deutsch: Werkzeug-Mittelpunkt) als Ursprung des Koordinatensystems. Das TCP-Koordinatensystem wird manuell kalibriert und aus den Ergebnissen dieser Kalibrierung wird das TCP-Koordinatensystem vom Roboter berechnet. Das TCP-Koordinatensystem gibt die Position des Werkzeugs an. Wenn Sie das Werkzeug am Roboterflansch wechseln, muss das TCP-Koordinatensystem immer wieder neu kalibriert werden, wobei Positionen im Programm gültig bleiben. Die Roboter-Endposition ist die kartesische Koordinate des TCP (Werkzeugmittelpunkts) im aktuellen Benutzerkoordinatensystem. Die Roboter-Endorientierung ist die Orientierung des TCP-Koordinatensystems im aktuellen Benutzerkoordinatensystem, dargestellt in Form von RPY (RX, RY, RZ in der JAKA-App). Die Abkürzung **TCP** wird in der JAKA-App zur Darstellung des Werkzeugkoordinatensystems (TCP-Koordinatensystems) verwendet.

<							in Sii	mulat Log	Signal JAKA_Doc f14 f
6	System Settings	Opt	eration Setti	ngs 反	Safety Set	ttings	Progr	am Settings	Hardware & Communication
	TCP Settings	Paylo	oad Settings		User Coordin	nates	Mountin	g Settings	Error Diagnosis
Ĩ	Name	X(mm)	Y(mm)	Z(mm)	RX°	RY°	RZ°	Edit	
	TCP1	0.000	100.000	0.000	0.000	0.000	0.000	ß	v O
	TCP2	0.000	0.000	0.000	0.000	0.000	0.000	Ø	× (())
	TCP3	0.000	0.000	0.000	0.000	0.000	0.000	ľ	
	TCP4	0.000	0.000	0.000	0.000	0.000	0.000		
	TCP5	0.000	0.000	0.000	0.000	0.000	0.000	Ø	¥
	TCP6	0.000	0.000	0.000	0.000	0.000	0.000	Ø	
	TCP7	0.000	0.000	0.000	0.000	0.000	0.000		Z
	TCP8	0.000	0.000	0.000	0.000	0.000	0.000	Ø	
	TCP9	0.000	0.000	0.000	0.000	0.000	0.000	Ø	
	TCP10	0.000	0.000	0.000	0.000	0.000	0.000		Y

Illustr. 5-8 TCP-Koordinatensystem

Das Flanschkoordinatensystem ist das Standard-Werkzeugkoordinatensystem. Der Ursprung des Flanschkoordinatensystems ist die Mitte des Flansches am Roboterende. Nach Außen zeigt der Flansch in die positive Richtung der Z-Achse, die Richtung der Linie, welche die Flanschmitte mit dem TIO verbindet, ist die negative Richtung der Y-Achse und die positive Richtung der X-Achse gemäß der Rechte-Hand-Regel.

Illustr. 5-9 Flanschkoordinatensystem

Die Parameter des Flanschkoordinatensystems sind nicht veränderbar. Der TCP (Werkzeugmittelpunkt) wird normalerweise am Ende des Endeffektors des Roboters eingestellt (z. B. in der Mitte der Greiferbacken oder des Saugnapfes etc.). Die JAKA-App stellt Ihnen 15 TCPs zur Verfügung. Die dazugehörigen Parameter können verändert werden. Sie ändern die Parameter in dem Sie **Input settings** (für manuelle Einstellungen), **Four-point settings** (4-Punkte-Einstellungen) oder **Six-point settings** (6-Punkte-Einstellungen) auswählen.

5.2.1.1 Manuelle Einstellungen

Der Lageversatz (Offset) des gewünschten Koordinatensystems wird in Bezug auf das Flanschkoordinatensystem berechnet. Klicken Sie auf 🧖 , geben Sie die Positionsdaten ein und klicken Sie auf **OK**. Im Anschluss werden das Kalibrierungsergebnis und eventuelle Fehler angezeigt.

<				.1 9889 e149
	Tool Center Point Settings			X Doc
System Set	Input settings	 Four-point setting 	ngs O Six-point settings	ardware & ommunication
TCP Setting	Name TCP1			ror Diagnosis
Nam		X Y	Z	
ТСР	Position	0.000 mm 100.000	mm 0.000 mm	
TCP				
TCP		RX RY	RZ	
ТСР	Orientation	0.000 0.000	0.000	
TCP				+ Y
ТСР	Calibration result (is Inp	ut settings result)		
TCP	TCP coo	rdinates	Maximum error (mm): 0.000	Z
TCP	X, Y, Z(mm) : [0.00	00, 100.000, 0.000]	Minimum error (mm): 0.000	
TCP	RX, RY, RZ(°): [0.00	00, 0.000, 0.000]	Average error (mm): 0.000	
TCP1		Cancel	ОК	Y Y
		~		

Illustr. 5-10 TCP manuelle Einstellung

5.2.1.2 4-Punkte-Einstellungen

Wählen Sie einen festen Punkt im Raum. Steuern Sie den Roboter so, dass er diesen Punkt mit vier verschiedenen Ausrichtungen erreicht. Der Endpunkt des TCP erreicht diesen Punkt und der gewünschte Versatz des Werkzeugkoordinatensystems in Relation zum Flanschkoordinatensystem wird mit Hilfe der 4-Punkte-Einstellungen automatisch berechnet. Der Einstellvorgang ist wie folgt:

- 1) Finden Sie einen festen Punkt, der sich in Reichweite des Roboters befindet.
- Klicken Sie auf Set Position Point 1 (Positionspunkt 1), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes erreicht. Klicken Sie anschließend auf OK.
- 3) Klicken Sie auf Set Position Point 2 (Positionspunkt 2), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes in einem anderen Achsenwinkel als bei Positionspunkt 1 erreicht. Klicken Sie anschließend auf OK.
- 4) Klicken Sie auf Set Position Point 3 (Positionspunkt 3), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes in einem anderen Achsenwinkel als bei Positionspunkt 1 und 2 erreicht. Klicken Sie anschließend auf OK.
- 5) Klicken Sie auf Set Position Point 4 (Positionspunkt 4), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes in einem anderen Achsenwinkel als bei Positionspunkt 1, 2 und 3 erreicht. Klicken Sie anschließend auf OK.
- 6) Klicken Sie auf Calibration, um die Parameter des Werkzeugkoordinatensystems zu erstellen.
- 7) Im Anschluss werden das Kalibrierungsergebnis und eventuelle Fehler angezeigt.

Illustr. 5-11 TCP 4-Punkte-Einstellung

5.2.1.3 6-Punkte-Einstellungen

Auf der Grundlage der 4-Punkt-Einstellungen wird der TCP (Werkzeugmittelpunkt) durch die Angabe von zwei zusätzlichen Positionspunkten bestimmt. Dadurch wird die automatische Berechnung der Parameter für die Position und Ausrichtung des TCP vervollständigt und die Parameter des gewünschten Werkzeugkoordinatensystems werden automatisch berechnet. Die 6-Punkte-Einstellung wird verwendet, wenn die Werkzeugachse am Roboterende nicht senkrecht oder parallel zum Flansch steht. Diese Einstellung ermöglicht die Ausrichtung der Z-Achse des Werkzeugkoordinatensystems mit der Achse am Roboterende. Der Einstellvorgang ist wie folgt:

- 1) Finden Sie einen festen Punkt, der sich in Reichweite des Roboters befindet.
- Klicken Sie auf Set Position Point 1 (Positionspunkt 1), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes erreicht. Klicken Sie anschließend auf OK.
- 3) Klicken Sie auf Set Position Point 2 (Positionspunkt 2), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes in einem anderen Achsenwinkel als bei Positionspunkt 1 erreicht. Klicken Sie anschließend auf OK.
- 4) Klicken Sie auf Set Position Point 3 (Positionspunkt 3), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes in einem anderen Achsenwinkel als bei Positionspunkt 1 und 2 erreicht. Klicken Sie anschließend auf OK.
- 5) Klicken Sie auf Set Position Point 4 (Positionspunkt 4), um den Roboter manuell so zu steuern, dass der Endeffektor die Position des Referenzpunktes in einem anderen Achsenwinkel als bei Positionspunkt 1, 2 und 3 erreicht. Klicken Sie anschließend auf OK. Positionspunkt 4 ist der Ursprung des gewünschten Werkzeugkoordinatensystems.

- 6) Klicken Sie auf Set Position Point 5 (Positionspunkt 5), lassen Sie den Positionspunkt 4 unverändert. Bewegen Sie von diesem Punkt aus einer Linie in positiver Richtung der Z-Achse des gewünschten Werkzeugkoordinatensystem, um den Positionspunkt 5 zu generieren. Klicken Sie anschließend auf OK.
- 7) Klicken Sie auf Set Position Point 6 (Positionspunkt 6), lassen Sie den Positionspunkt 5 unverändert. Bewegen Sie von diesem Punkt aus einer Linie in positiver Richtung der XOZ-Ebene des gewünschten Werkzeugkoordinatensystem, um den Positionspunkt 6 zu generieren. Klicken Sie anschließend auf OK.
- 8) Klicken Sie auf OK, um die Parameter des gewünschten Werkzeugkoordinatensystems zu generieren. Die Linienrichtung zwischen Positionspunkt 4 und Positionspunkt 5 ist die gewünschte positive Richtung der Z-Achse des Werkzeugkoordinatensystems.
- 9) Im Anschluss werden das Kalibrierungsergebnis und eventuelle Fehler angezeigt.

Illustr. 5-12 TCP 6-Punkte-Einstellung

5.2.2 Einstellungen des Benutzerkoordinatensystems

Das Benutzerkoordinatensystem ist ein Koordinatensystem, welches eine manuelle Kalibrierung erfordert. Die Kalibrierung wird vom Roboter auf der Grundlage der Kalibrierungsergebnisse berechnet. Wenn Sie die Position des Werkzeugs ändern, muss nur das Benutzerkoordinatensystem neu kalibriert werden. Die Positionen im Roboterprogramm bleiben unverändert.

<					Simula	ation Log	III े Signal JAKA_	f14f 1898 Doc
System Settings	Operation Settin	gs 😥	Safety Set	tings	Progra	am Settings		ardware & ommunicatior
TCP Settings	Payload Settings	U	lser Coordin	ates	Mounting	9 Settings	Er	ror Diagnosis
	Name	X(mm)	Y(mm)	Z(mm)	RX°	RY°	RZ°	Edit
l	JSRFRM1	0.000	0.000	200.000	0.000	0.000	0.000	
l	JSRFRM2	0.000	0.000	0.000	0.000	0.000	0.000	Ø
l	JSRFRM3	0.000	0.000	0.000	0.000	0.000	0.000	ľ
l	JSRFRM4	0.000	0.000	0.000	0.000	0.000	0.000	
l	JSRFRM5	0.000	0.000	0.000	0.000	0.000	0.000	Ø
l	JSRFRM6	0.000	0.000	0.000	0.000	0.000	0.000	Ø
l	JSRFRM7	0.000	0.000	0.000	0.000	0.000	0.000	
l	JSRFRM8	0.000	0.000	0.000	0.000	0.000	0.000	ß
l	JSRFRM9	0.000	0.000	0.000	0.000	0.000	0.000	Ø
U	ISRFRM10	0.000	0.000	0.000	0.000	0.000	0.000	C

Illustr. 5-13 Benutzer-Koordinatensystem Einstellungen

Das Standard-Benutzerkoordinatensystem des Roboters ist das Weltkoordinatensystem. Das Weltkoordinatensystem basiert auf dem Mittelpunkt der Roboterbasis. Falls der Roboter auf einem Tisch montiert wird, ist die Sockelausrichtung, die senkrecht zum Roboter zeigt, die positive Z-Achse, die Richtung der Linie, die den Mittelpunkt des Sockels mit der Schnittstelle des Roboteranschlusskabels verbindet, ist die positive X-Achse. Die positive Y-Achse wird nach der Rechte-Hand-Regel festgelegt. Die Parameter des Weltkoordinatensystems können nicht verändert werden.

Illustr. 5-14 Benutzer-Koordinatensystem Achsen

Zusätzlich zum Weltkoordinatensystem können Sie in der JAKA-App Benutzerkoordinatensysteme mit veränderbaren Parametern einrichten. Sie können die TCP-Parameter bearbeiten, indem sie die

Eingabeeinstellungen und die 3-Punkte-Einstellungen nutzen.

5.2.2.1 Eingabeeinstellungen

Tragen Sie die Abweichung (Divergenz) des gewünschten Benutzerkoordinatensystems im Verhältnis zum Weltkoordinatensystem in das entsprechende Feld ein und klicken Sie auf **OK**. Das Kalibrierungsergebnis erscheint danach.

<					1	Simulation	EI Log	II Signal	JAKA_Doc.	f14f 1898	•••
System Set	User Coordin	ates Settings							× ard	ware & municat	ion
TCP Setting		🖲 Inpu	t settings	⊖ Three	e-point setting	IS			ror	Diagnosis	5
	Name (USRFRM1									
			×	Y	Z					Edit	
		Position	0.000 mm	0.000 mm	200.000 mr	m					
			RX	RY	RZ					6	
		Orientation	0.000	0.000	0.000					[]	
		Calibratic	on rocult (is Innu	t cottings result)						ß	
		Calibratic	User	coordinate						CA I	
			X, Y, Z(mm): [0.000, 0.000, 200.000	D]					[9]	
			RX, RY, RZ(°) : [I	0.000, 0.000, 0.000]						G	
			Cancel	ОК						ß	
				-						G	
				~							

Illustr. 5-15 Eingabeeinstellungen

5.2.2.2 3-Punkte-Einstellungen

Die Parameter der X-, Y- und Z-Achse des gewünschten Benutzerkoordinaten werden automatisch aus den drei, vom Benutzer festgelegten, Positionspunkten berechnet. Die drei Positionspunkte werden wie folgt definiert:

- 1) Positionspunkt 1: Der Ursprung des Benutzerkoordinatensystems
- Positionspunkt 2: Beliebiger Punkt in der positiven Richtung der X-Achse des Benutzerkoordinatensystems.
- Positionspunkt 3: Beliebiger Punkt auf dem ersten Quadranten der XOY-Ebene des Benutzerkoordinatensystems

Das Kalibrierungsergebnis erscheint danach.

ANMERKUNG

Das gewählte Koordinatensystem bestehend aus Positionspunkt 1, 2 und 3 sollte konsistent sein.

<					Simu	latio L	∎ ng Si	gnal JAKA	f 14 f 1898	
🔞 System Set	User Coordinates Settings							\times	ardware & ommunicat	ion
TCP Setting) Input setti	ngs (Three-p	ooint se	ttings				ror Diagnosis	
	Name USKFRM1	Setting Results	X(mm)	Y(mm)	Z(mm)	RX°	RY°	RZ°	Edit	
	Ž Z Y	Set Point 1 Set Point 2	0.000	0.000	0.000	0.000	0.000	0.000		
	□	Set Point 3	0.000	0.000 Calibra	0.000 ition	0.000	0.000	0.000	Ľ	
	Calibration rest	ult (is Input settings	; result)							
		User coordinate								
	Х, Ү	r, Z(mm) : [0.000, 0.000	0, 200.000]							
	RX, I	RY, RZ(°): [0.000, 0.000	0, 0.000]							
		Cancel	ОК							
			_						ß	ļ.
		~								

5.2.3 Einstellungen der Nutzlast

Die Nutzlast bezieht sich auf die Masse und den Schwerpunkt jedes Objekts, welches am Roboterende angebracht wird. Nutzlastinformationen müssen korrekt eingestellt werden, damit die Steuerung den tatsächlichen Arbeitszustand des Roboters präzise berechnen kann. Wenn die Nutzlast richtig eingestellt ist und der Roboterflansch nach unten zeigt, bleibt das Roboterende in Position, ohne abzudriften, sobald die Drag-Taste gedrückt wird, um den Roboter manuell zu bewegen.

VORSICHT

Die eingestellte Nutzlast darf nicht von der tatsächlichen Nutzlast abweichen. Das kann dazu führen, dass die Robotersteuerung eine Kollision falsch erkennt und der Roboter anhält oder beschädigt wird. Stellen Sie die Nutzlast korrekt ein.

				یں n Sim	ulat Log Sig	II IIII INAL JAKA_Doc
System Settings	Operation Sett	ings 反 Sat	fety Settings	S Progra	m Settings	Hardware & Communicati
TCP Settings	Payload Settings	User	Coordinates	Mounting	Settings	Error Diagnosis
Manual input mode		 Auto identifie 	cation mode			
Payload 0.000	kg	Loaded or not:	• Yes	⊖ No		?
Center of mass: X 0.000	mm	Trajectory 1	Set Start Point	Set End Point	Trial Run	Start Identification
Y 0.000	mm	Trajectory 2	Set Start Point	Set End Point	Trial Run	Start Identification
Z 0.000	mm	Trajectory 3	Set Start Point	Set End Point	Trial Run	Start Identification
Cancel	OK		R	ocet	Get Result	
Cancer					Striesur	

Illustr. 5-17 Nutzlast-Einstellungen

Die Nutzlast kann wie folgt eingestellt werden:

1) Manuell:

Sie erhalten die genauen Nutzlastinformationen durch die Berechnung bzw. Messung. Tragen Sie in das entsprechende Eingabefeld die korrekte Masse und Schwerpunktmasse ein und klicken Sie auf **OK**.

ANMERKUNG

Die Schwerpunktmasse ist ein relativer Begriff. Sie ist bezogen auf die Flanschmitte am Roboterende und die X-, Y- und Z-Werte der Schwerpunktmasse sind räumliche Werte im Flanschkoordinatensystem. Zur Verbesserung der Messgenauigkeit der Schwerpunktmasse, sind Berechnungen mit einer 3D-Konstruktionssoftware empfohlen.

2) Automatisch:

Um die Masse und den Masseschwerpunkt zu berechnen, werden die Drehmomente der Achsen 3, 4, 5 und 6 des Roboters sowohl im beladenen als auch im unbeladenen Zustand berechnet. Somit wird die Masse und der Masseschwerpunkt der Nutzlast ermittelt. Die Einstellungsschritte dazu sind folgende:

Schritt 1: Der Roboter muss dieselbe Bahn in zwei verschiedenen Zuständen absolvieren (unbelastet und mit der zu identifizierenden Last). Zuerst wird der Modus mit der Nutzlast ausgewählt. Wenn der Roboter beladen ist, muss er in die Positionen 0°, 90°, 0°, 180° und 0° gebracht und in einem vertikalen Zustand gehalten werden. Diese Ausrichtung dient als Referenzausrichtung für den Prozess.

Schritt 2: In diesem Schritt wird die Bewegungsbahn des Roboters ermittelt. Klicken Sie auf Set Start Point, um die manuelle Einstellungsoberfläche aufzurufen. Folgende Einschränkungen müssen für den Startpunkt der Spur 1 eingehalten werden:

- Achse 2 bei 90°
- Achse 3 bei 0°
- Achse 4 im Bereich von -60° bis 60°
- Achse 5 bei 180°
- Winkel der Achse 4 und Achse 6 sollte gleich sein.

Speichern Sie die Einstellungen und verlassen Sie die Oberfläche zur manuellen Einstellung. Klicken Sie auf **Set End Point**. Die Grenzbedingung ist die gleiche wie die von **Set Start Point**, jedoch ist der Winkelunterschied zwischen dem Startpunkt und dem Endpunkt von Achse 4 mehr als 10°. Speichern Sie die Einstellungen und verlassen Sie die Oberfläche zur manuellen Einstellung. Drücken und halten Sie **Set Start Point**, um zum Startpunkt zurückzukehren. Drücken und halten Sie **Trail Run**, um vom Startpunkt zum Endpunkt der entsprechenden Bahn zu gelangen. Achten Sie darauf, dass die Bewegungsbahn nicht gestört wird. Klicken Sie auf **Start Identification**. Falls der Roboter nicht am Startpunkt steht, wird er aufgefordert sich dorthin zu bewegen. Nachdem die Bewegungsbahn durchlaufen ist, wechselt die Schaltfläche **Start Identification** zu **Idenification Complete**.

Schritt 3: Klicken Sie auf Set Start Point der Spur 3, um die manuelle Einstellungsoberfläche aufzurufen. Folgende Einschränkungen müssen für den Startpunkt der Spur 2 eingehalten werden:

- Achse 2 bei 90°
- Achse 3 bei 0°
- Achse 4 im Bereich von -60° bis 60°
- Achse 5 bei 180°
- Winkel der Achse 6 ist um 90° größer als der Winkel der Achse 4.

Speichern Sie die Einstellungen und verlassen Sie die Oberfläche zur manuellen Einstellung. Klicken Sie auf **Set End Point**. Die Grenzbedingung ist die gleiche wie die von **Set Start Point**, jedoch ist der Winkelunterschied zwischen dem Startpunkt und dem Endpunkt von Achse 4 mehr als 10°. Speichern Sie die Einstellungen und verlassen Sie die Oberfläche zur manuellen Einstellung. Drücken und halten Sie **Set Start Point**, um zum Startpunkt zurückzukehren. Drücken und halten Sie **Trail Run**, um vom Startpunkt zum Endpunkt der entsprechenden Bahn zu gelangen. Achten Sie darauf, dass die Bewegungsbahn nicht gestört wird. Klicken Sie auf **Start Identification**. Falls der Roboter nicht am Startpunkt steht, wird er aufgefordert sich dorthin zu bewegen. Nachdem die Bewegungsbahn durchlaufen ist, wechselt die Schaltfläche **Start Identification** zu **Idenification Complete**. **Schritt 4**: Klicken Sie auf Set Start Point der Spur 4, um die manuelle Einstellungsoberfläche aufzurufen. Folgende Einschränkungen müssen für den Startpunkt der Spur 3 eingehalten werden:

- Achse 2 bei 90°
- Achse 3 bei 0°
- Achse 4 bei 0°
- Achse 5 im Bereich von 170° bis 180°.

Speichern Sie die Einstellungen und verlassen Sie die Oberfläche zur manuellen Einstellung. Klicken Sie auf Set End Point. Folgende Einschränkungen müssen für den Endpunkt der Spur 2 eingehalten werden:

- Achse 2 bei 90°
- Achse 3 bei 0°
- Achse 4 bei 0°
- Achse 5 im Bereich von 180° bis 190° und die Summe der Anfangswinkelwerte von Achse 5 ist 360°
- Winkel der Achse 6 ist derselbe wie der Winkel von Startpunkt 6.

Speichern Sie die Einstellungen und verlassen Sie die Oberfläche zur manuellen Einstellung. Drücken und halten Sie **Set Start Point**, um zum Startpunkt zurückzukehren. Drücken und halten Sie **Trail Run**, um vom Startpunkt zum Endpunkt der entsprechenden Bahn zu gelangen. Achten Sie darauf, dass die Bewegungsbahn nicht gestört wird. Klicken Sie auf **Start Identification**. Falls der Roboter nicht am Startpunkt steht, wird er aufgefordert sich dorthin zu bewegen. Nachdem die Bewegungsbahn durchlaufen ist, wechselt die Schaltfläche **Start Identification** zu **Idenification Complete**.

Schritt 5: Nachdem Sie bestätigt haben, dass die drei Bewegungsbahnen mit Nutzlast identifiziert worden sind, entfernen Sie die Nutzlast und klicken Sie auf **No**, um zum Modus ohne Nutzlast zu wechseln. Beim Modus ohne Nutzlast müssen Sie die Bewegungsbahn nicht zurücksetzten. Der Betrieb von drei Bewegungsbahnen wird nacheinander abgeschlossen. Nach der Identifizierung der Nutzlast, werden relevante Daten für die Nutzlast und den Masseschwerpunkt automatisch berechnet und aktualisiert.

ANMERKUNG

Wenn eine der Einschränkungen nicht erfüllt ist, erscheint in der JAKA-App ein Popup-Fenster mit der entsprechenden Information.

5.2.4 Montageeinstellungen

Der Roboter kann in jedem beliebigen Winkel installiert werden. Nachdem der Roboter montiert wurde, müssen Informationen zur Montageausrichtung des Roboters in die JAKA-App eingegeben werden. Auf diesem Weg wird die Betriebssicherheit des Roboters gewährleistet. Klicken Sie auf **Settings > Operation Settings > Mounting Settings** in der Funktionsleiste und passen Sie die Montageausrichtung des Roboters in der Software entsprechend der tatsächlichen Montageausrichtung an. Klicken Sie auf die obere rechte Seite der Oberfläche und bestimmen Sie, ob es eine Decken-, Wand- oder Tischmontage ist. Standardmäßige Einstellung ist die Tischmontage. Um sicher zu stellen, dass die Montageausrichtung des Roboters in der Software mit der tatsächlichen Montageausrichtung übereinstimmt, klicken Sie auf die rote Dreieckschaltfläche und passen Sie den Wert (Winkel) manuell an. Klicken Sie **OK**, um die Einstellungen zu bestätigen.

<			Simulation Log Signa	f 1 4 f at JAKA_Doc_
System Settings	(C) Operation Settings	Safety Settings	Program Settings	Communication
TCP Settings	Payload Settings	User Coordinates	Mounting Settings	Error Diagnosis
			-45°	0 +45° X direction
			-45°	0 +45°
				Z direction
				ОК
				x

Illustr. 5-18 Montage

5.2.5 Fehlerdiagnose

Bei einer Störung des Roboters werden Informationen über die Störung automatisch von der Steuerung als ZIP-Datei gespeichert. Die Datei ist nach der aktuellen Systemzeit benannt. Falls keine Störung vorhanden ist, können Sie die Diagnose auch manuell auf der Fehlerdiagnose-Oberfläche aufrufen.

<				ulation Sir Log Si	ignal JAKA_Doc f14f
6	System Settings	Operation Settings	Safety Settings	Program Settings	Hardware & Communication
	TCP Settings	Payload Settings	User Coordinates	Mounting Settings	Error Diagnosis
					<i></i> ⟨ ♪ ⟩
	Di	agnosis Record		Operation	s
		There is no diagnosis record now.	please click "()" to start diagno	sis, and click "()" to stop diagnosis	
			~		

Illustr. 5-19 Fehlerdiagnose

1	Fehlerdiagnose exportieren
Ū	Fehlerdiagnose löschen
9	Fehlerdiagnose starten
 	Fehlerdiagnose läuft
	Fehlerdiagnose anhalten

Tbl. 5-1 Fehlerdiagnose

ANMERKUNG

Nachdem Sie das erste Mal auf die Schaltfläche **Diagnose** geklickt haben, können Sie erneut auf die Schaltfläche **Diagnose** klicken, um die Diagnosezeit zu verlängern.

5.3 Sicherheitseinstellungen

5.3.1 Grenzwerteinstellungen der Achsen

In der Schnittstelle für die Grenzwerteinstellungen der Achsen können Sie den weichen Grenzwinkel, die Geschwindigkeitsbegrenzung und die Fehleralarmschwelle für jede einzelne Achse einstellen.

System Settings	(C) Operation Se	ttings 🕢 Safety Se	ettings Co Pro	ogram Settings	Communication	
Joint Limit	Robot Orientation	Robot Limit	Safety Zone	Tool Orientation	Dedicated Safety I/	
Joint Name	Joint Forward Limit	Joint Reverse Limit	Joint Speed Limit	Error Threshold	Reset	
Joint 1	360.000 °	-360.000 °	180.000°/s	80 %	Ŕ	
Joint 2	230.000 °	-50.000°	120.000°/s	80 %	R	
Joint 3	155.000 °	-155.000 °	120.000°/s	80 %	R	
Joint 4	265.000 °	-85.000 °	180.000°/s	80 %	Ŕ	
Joint 5	360.000 °	-360.000 °	180.000°/s	80 %	R	
Joint 6	360.000 °	-360.000 °	180.000°/s	80 %	Ŕ	

Illustr. 5-20 Fehlerdiagnose

ANMERKUNG

Die Fehleralarmschwelle bezieht sich auf die Alarmmeldung des Roboters, wenn der Offset-Fehler der Roboterbewegung größer als die Alarmschwelle ist. Der Standardwert ist 80%.

5.3.2 Einstellungen der Roboterausrichtung

Drei verschiedene Ausrichtungen können in der entsprechenden Schnittstelle eingestellt werden. Die Default-Ausrichtung (**Default Orientation**) ist die Ausrichtung des Roboters für den Transport bzw. die Verpackung. Die offene Ausrichtung (**Open-Orientation**) oder auch als Nullausrichtung bezeichnet, wird für die mechanische Nullkalibrierung verwendet. Die Anfangsausrichtung (**Initial Orientation**) ist eine Sicherheitsausrichtung, welche vom Benutzer bearbeitet/festgelegt werden kann. Sobald die Anfangsausrichtung festgelegt worden ist, kann sie vom Roboter durch das Drücken der Home-Taste am Bediengriff erreicht werden. Sobald der Roboter die Anfangsausrichtung erreicht hat, kann die E/A-Funktion Anfangsausrichtung (**Initial Orientation**) ausgelöst werden.

<				Simulation	Log Signa	f al JAKA_Doc	14f •••
System Settings	(Operation Setti	ngs 😺 Safe	ty Settings	S Program S	ettings	Hardwa	are & inication
Joint Limit	Robot Orientation	Robot Limit	Safety Zo	one Tool	Orientation	Dedicate	d Safety I/O
Default orientation	-90.000 ° 0.000 °	152.000 ° 1	20.000 0.00	00 ° 0.000	°C (Move to Tar	get Point
Open orientation	0.000 ° 90.000 °	0.000	90.000 ° 180.0	000 ° 0.000	° 🖉 (Move to Tar	get Point
Initial orientation	-90.000 ° 0.000 °	152.000 ° 1	20.000 0.00	0.000	° ¢ (Move to Tar	get Point
Initial orientation error	0.100						
Moving speed		(51.084%				

Illustr. 5-21 Roboterausrichtung

In den Einstellungen der Roboterausrichtung kann auch ein Sicherheitsfehler eingestellt werden (Anfangsausrichtungsfehler). Dieser tritt auf, wenn die Differenz zwischen allen Achsen und den Achsen der Sicherheitsausrichtung innerhalb dieses Fehlerbereichs liegt. Die DO-Funktion (DO steht für digitaler Ausgang) der Sicherheitsausrichtung wird ausgelöst.

12	Die Position der Anfangsausrichtung
-	bearbeiten.
	Drücken und halten der Taste, um den
Mevo to Target Foint	Roboter in die Anfangsausrichtung zu
	bewegen.
	Die Geschwindigkeit des Roboters bei der
	Bewegung in die Anfangsausrichtung
	anpassen.

Tbl. 5-2 Roboterausrichtung

5.3.3 Grenzwerteinstellungen des Roboters

Folgende Einstellungen können in dieser Schnittstelle verändert/festgelegt werden: Bewegungsbegrenzung (**Motion Limit**), Einstellungen der Kollisionserkennung (**Collision Settings**), Einstellungen für den reduzierten Modus (**Reduced Mode Settings**) und Freedrive-Modus-Begrenzung (**Freedrive Limit**).

5.3.3.1 Bewegungsbegrenzung

Die Bewegung des Roboters kann durch zwei Einstellungsmethoden begrenzt werden: Schnelleinstellung (**Quick Setup**) und die benutzerdefinierte Einstellung (**User-defined**). Die Einstellung der Empfindlichkeit des Kollisionsschutzes wird in der Schnelleinstellung (**Quick Setup**) durch Ziehen des Schiebereglers eingestellt. Bei den benutzerdefinierten Einstellungen können die einzelnen Werte wie Kraft-, Momentum-, TCP-Geschwindigkeits-, Leistungs-, Anhaltezeit- und Anhaltedistanzbegrenzung durch Ziehen der jeweiligen Schieberegler eingestellt werden. Alternativ können die Werte auch per Hand eingegeben werden. Die Kraftbegrenzung steht für den Kraftwert, welcher erforderlich ist, um eine Kollisionswarnung zu verursachen, sobald der Roboter mit seiner Umgebung kollidiert. Je höher der eingestellte Prozentsatz, desto höher muss der Kraftwert sein, der zum Anhalten des Roboters erforderlich ist. Die Begrenzungen für das Momentum, die TCP-Geschwindigkeit, Leistung, Anhaltezeit und Anhaltedistanz beziehen sich auf die Geschwindigkeit des Roboters und je kleiner der Einstellungswert ist, desto langsamer bewegt sich der Roboter. Die Einstellungen werden automatisch gespeichert. Sobald Sie also zwischen den einzelnen Methoden der Kollisionseinstellungen wechseln, werden die Werte angezeigt, welche bei der letzten Einstellung dieser Methode eingestellt wurden. Eine Ausnahme davon ist die Kraftbegrenzung, welche sich beim Wechsel der Methode nicht ändert. Es wird nur der letzte Einstellungswert angezeigt.

<				ıul	ation Si Log	III Signal JAk	f 1 4 f (A_Doc_ 1898	•••
System Settings	(R) Operation Set	tings 😡 Sa	fety Settings	Se Pro	gram Setting	s (P)	Hardware & Communica	tion
Joint Limit	Robot Orientation	Robot Limit	Safety Z	lone	Tool Orienta	ation	Dedicated Saf	ety I/O
Motion Lim	Collision	Settings	Reduced Mode Sett	ings	Freedrive Lir	mit		
	 Quick setup Strict User-defined Force limit Momentum limit (kg-r TCP speed limit (mr Power limit 1 Stopping time Stopping distance (mr 	General (%): m/s): (W): e (s): m/s):	Relaxed	90 100.000 4637.750 2112.625 5.000 4000.000	n			

Illustr. 5-22 Einstellungen Bewegungsbegrenzung

5.3.3.2 Einstellungen der Kollisionserkennung

Im manuellen Betrieb wird der Roboter, unabhängig davon, ob er sich bewegt oder stillsteht, bei einer Kollision nicht zurückprallen. Wenn die externe Krafteinwirkung groß genug ist, kann der Roboter innerhalb eines bestimmten Bereichs bewegt werden. Wenn der Roboter ein Programm ausführt, stoppt bei einer Kollision (die Rückprallposition der Achse weicht um etwa 1° von der Programmposition) die Roboterbewegung und das Programm wird beendet. Bei einer schweren Kollision (die Rückprallposition der Achse weicht um etwa 3,6° von der Programmposition) stoppt der Roboter und wird deaktiviert. In dieser Schnittstelle können Sie den Winkel des Rückpralls in einem Bereich von 0° bis 3° einstellen.

<						Simulatic Log	III Signal J	f 1 4 AKA_Doc_	f •••
System Se	ettings	Operation Se	ettings 😥	Safety Settings	ß	Program Settin	igs	Hardware Communi	& cation
Joint Limit	Robot (Drientation	Robot Lim	nit Safet	/ Zone	Tool Orien	ntation	Dedicated S	afety I/O
M	otion Limit	Collision	Settings	Reduced Mode S	ettings	Freedrive L	Limit		
	Collisio	on bounce angle	(°): 3.000						
				OK					
				\sim					

Illustr. 5-23 Einstellungen Kollision

5.3.3.3 Einstellungen des reduzierten Modus

In der Schnittstelle reduzierter Modus (Reduced Mode Settings) können Sie die TCP-Geschwindigkeit, Achsen-Geschwindigkeit, Momentum, Leistung, Anhaltezeit und Anhaltedistanz festlegen. Die Einstellungen können auf zwei Arten verändert werden. Durch ziehen des Schiebereglers oder durch Eingabe der Werte. Klicken Sie anschließend auf OK, um die Einstellungen zu übernehmen. Die Sicherheitsprüfsumme (Safety Checksum) wird dementsprechend verändert. Der Standardgrenzwert ist der Maximalwert für den angeschlossenen Roboter.

				Simulation Log	Signal JAKA_Doc_ f14f
System Settings	🛞 Operation Se	ettings 反 Saf	ety Settings	Program Settings	Hardware & Communication
Joint Limit	Robot Orientation	Robot Limit	Safety Zon	e Tool Orientat	tion Dedicated Safety I
Motion Limit	t Collision	Settings R	educed Mode Setting	s Freedrive Lim	it
	TCP speed limit (m	m/s):		50.000	
	Elbow speed (m	m/s):	1 2	50.000	
	Momentum limit (kg-	m/s):		2.500	
	Power limit	(W):		10.000	
	Stopping time	e (s):		5.000	
	Stopping distance (mi	m/s):	• 40	00.000	
			ОК		

Illustr. 5-24 Reduzierter Modus

5.3.3.4 Freedrive-Begrenzung

Die Freedrive-Geschwindigkeit des Roboter-TCP kann in der Freedive-Schnittstelle (Freedrive Limit) in einem Bereich von 50 bis 1500 mm/s eingestellt werden. Sobald die eingestellte Geschwindigkeit überschritten wird, hält der Roboter an, bleibt aktiv und schaltet der Freedrive-Modus aus. Diese Geschwindigkeitsbegrenzung gilt nur für die TCP-Geschwindigkeit beim Freedrive-Modus. Sie wird nicht von der TCP-Geschwindigkeit, welche in der Schnittstelle zur Bewegungsbegrenzung und den reduzierten Modus festgelegt wurde.

<							Jlation Sin Log	III Signal JA	f 14 f KA_Doc_ 1898	
6	System Settings	Op Op	eration Settings	Safety Safety	/ Settings	S₀ P	rogram Setting		Hardware Communic	& ation
	Joint Limit	Robot Orient	ation Rol	oot Limit	Safety Z	Zone	Tool Orienta	ation	Dedicated Sa	fety I/O
	Motion Lim	it	Collision Setting	s Red	uced Mode Sett	tings	Freedrive Lir	nit		
	TCF	⁹ freedrive spe	ed limit (mm/s): «			1000.000				
				0	Ж					

EINSTELLUNGEN

Illustr. 5-25 Freedrive-Modus

5.3.4 Einstellungen der Sicherheitszone

Um zu verhindern, dass der Roboter während des Betriebs mit anderen Objekten kollidiert, können Sie eine Sicherheitszone (**Safety Zone**) in den Sicherheitseinstellungen (**Safety Settings**) erstellen. Durch die Sicherheitszone wird die Bewegung des Robotes und der Ellbogenachse (Achse 3) eingeschränkt.

<				ı Simulatio		f14f 1898	•••
System Settings	(R) Operation S	ettings 🕢 Safety	Settings	R Program	Settings	Hardware & Communicatio	on
Joint Limit	Robot Orientation	Robot Limit	Safety Zon	ie Toc	l Orientation	Dedicated Safety	y I/O
		J.			Power on e Run enable Elbow limit Reduced m plane1 plane2 plane2 plane3 plane4 plane5	inabled id iode of of of of of of of of of of of of of	
				x x y	■ plane6		•

Illustr. 5-26 Sicherheitszone

Die Sicherheitszone lässt sich durch zwei verschiedene Methoden aktivieren. Die erste Methode (Power on enabled) aktiviert die Sicherheitszone, sobald der Roboter eingeschaltet ist. Die zweite Methode (Run enabled) aktiviert die Sicherheitszone, sobald das Programm des Roboters in der JAKA-App ausgeführt wird. Die Sicherheitszone ist nicht aktiv, wenn der Roboter sich im Freedrive-Modus oder manuellen Betrieb befindet oder durch ein SDK (Software Development Kit) gesteuert wird. Sobald der Schalter zur Begrenzung der Bewegung der Achse 3 (Elbow limit) eingeschaltet ist, wird die Sicherheitszone auf den Ellbogen (Achse 3) ausgeweitet. Sie können im Dropdown-Menü bestimmen, in welchen Zustand der Roboter übergeht, nachdem er die Sicherheitszone erreicht hat. Folgende Zustände können im Dropdown-Menü bestimmt werden: Roboter-Stopp (Stop), Schutzstopp (Protective stop) oder reduzierter Modus (Reduced mode). Sobald die Sicherheitszone im Modus Roboter-Stopp (Stop) erreicht wird, stoppt der Roboter, das Programm wird beendet und der Roboter deaktiviert. Sie können den Roboter innerhalb der Sicherheitszone wieder aktivieren. Sobald die Sicherheitszone im Modus Schutzstopp (Protective stop) erreicht wird, bremst der Roboter ab, bis er zum Stillstand kommt und die Meldung "Safety plane protective stop" (Schutzstopp der Sicherheitszone) erscheint am Bildschirm. Falls der Roboter erneut die Sicherheitszone erreicht, wird der Schutzstopperneut aktiviert. Drücken Sie auf OK, um den Roboter wieder aus dem Modus Schutzstopp zu bringen. Der Roboter kann den Schutzstopp-Modus ebenfalls verlassen und sich durch die Sicherheitszone bewegen, in dem er den Sicherheits-DI zum Zurücksetzen des Schutzstopps aktiviert. Sobald die Sicherheitszone im reduzierten Modus (Reduced mode) erreicht wird, geht der Roboter in den reduzierten Modus (Reduced mode) über (TCP-Geschwindigkeit ≤ 250 mm/s) und die Meldung "Robot enters the reduced mode" (Roboter geht in reduzierten Modus über) erscheint am Bildschirm. Klicken Sie auf OK und der Roboter bleibt im reduzierten Modus so lange, bis er nicht wieder die Sicherheitszone erreicht.

Sie können sechs verschiedene Ebenen der Sicherheitszone einstellen. Keine der sechs Ebenen ist begrenzt. Sie stellen die Ebenen wie folgt ein:

- 1) Klicken Sie auf >, um die Liste zu öffnen und die Sicherheitszone zu bearbeiten.
- 2) Benennen Sie die Begrenzung.
- Klicken Sie auf > jeweils hinter Begrenzung 1,2 und 3, um die Schnittstelle zur manuellen Bearbeitung aufzurufen. Legen Sie die Position der Punkte 1 bis 3 fest (ursprünglicher TCP) und die Steuerung berechnet automatisch die Sicherheitszone.
- 4) Klicken Sie auf ⁽²⁾, um die Schnittstelle f
 ür den manuellen Betrieb aufzurufen. Bewegen Sie den Roboter auf die sichere Seite der Sicherheitszone und klicken sie auf **OK**. Der Sicherheitspunkt wird dazu verwendet, um die sichere Seite der Sicherheitszone zu bestimmen.
- 5) Der Sicherheitsabstand (Safety distance) bezieht sich auf den Abstand zwischen dem Ende des Roboters und der Sicherheitszone (wird in mm dargestellt). Sobald der Sicherheitsabstand kleiner oder gleich dem vom Benutzer eingestellten Wert ist, wird die der Sicherheitszustand ausgelöst und der Zustand des Roboters ändert sich.
- 6) Aktivieren Sie die Schaltfläche **Enable** (aktivieren).

					=h 1 🛰	0822
<				Simulation L	bg Signal JKROE	2fle
🔞 System Settings	(C) Operation Settir	ngs 🕢 Safety S	Settings	Program Set	tings 🔂 H	ardware & ommunication
Joint Limit	Robot Orientation	Robot Limit	Safety Zone	Tool Or	ientation De	edicated Safety I/O
					Power on enabled Run enabled Elbow limit	
					Reduced mode	T
				-1114	plane1	• ~
		+++++			Plane name	plane1
					Plane point 1	£05
				<u> </u>	Plane point 2	403
	7777777				Plane point 3	505
					Safety plane point	503 1
					Enable	
				z	Safety distance	0
				Y		$\otimes \oslash$
				X	nlane?	\bullet

Illustr. 5-27 Sicherheitszone Einstellungen

5.3.5 Einstellungen der Werkzeugausrichtung

Um Kollisionen zwischen dem Endwerkzeug und dem Roboter oder der Umgebung zu vermeiden, kann ein konusförmiger Grenzbereich (**Tool Orientation**) eingestellt werden. Der Grenzbereich schränkt die Bewegung des Endwerkzeugs innerhalb des eingestellten Bereichs ein.

<				in Simulat	Log Signal	f 1 4 f JAKA_Doc
System Settings	(R) Operation Setting	gs 🕢 Safety	Settings	R Program S	Settings	Hardware & Communication
Joint Limit	Robot Orientation	Robot Limit	Safety Z	one Tool	Orientation	Dedicated Safety I/O
	t				Power on ena	bled
					Select coordin	ate system:
					Teel direction	nter
					X direction	7 direction
					Safety distanc	p.
					20	0
					Limit direction	· 603
					RX I	RY RZ
					180	0 90
					Limit range:	0
				Z	30	
				x	Cancel	ОК

Illustr. 5-28 Werkzeugausrichtung

Die schematische Darstellung ist folgende:

Illustr. 5-29 Werkzeugausrichtung Schema

- A: Werkzeug
- B: Ausgangspunkt des gewählten Koordinatensystems
- C: Offset-Winkel (Versatzwinkel) der Werkzeugausrichtung, Offset (Versatz) der X-Achse
- D: Sichere Entfernung
- E: Begrenzung

Die Werkzeugausrichtung kann durch zwei Methoden aktiviert werden. Einerseits beim Einschalten des Roboters (Power on enabled) und die zweite Methode ist beim Ausführen des Programms (Run enabled). Im Freimodus (Freedrive) und manuellen Betrieb ist die Werkzeugausrichtung nicht aktiv. Das Als Koordinatensystem (Select coordinate system) kann die Mitte des Flansches (End flange center) oder das Werkzeugkoordinatensystem (Tool coordinate system) eingestellt werden. Das Einstellen des Koordinatensystems dient zur Bestimmung des Apex-Position (Scheitelpunkt) des Werkzeugs und des konusförmigen Grenzbereichs. Die Apex-Position (Scheitelpunkt) ist der Ausgangspunkt des Koordinatensystems. Die Werkzeugrichtung (Tool direction) bestimmt die Richtung des Werkzeugs. Der Offset-Winkel (Versatzwinkel) bezieht sich auf das gewählte Koordinatensystem in der X- oder Z-Achse. Der Abstand zwischen dem Werkzeug und der eingestellten Werkzeugabgrenzung wird als sichererer Abstand (Safe distance) bezeichnet. Der Bereich kann zwischen 0 und dem eingestellten Grenzwert sein. Wenn dieser Abstand kleiner als der eingestellte sichere Abstand (Safe distance) ist, erscheint das Pop-Up-Fenster "About to exceed the orientation safety limit." ("Wert des sicheren Abstands überschritten."). Sobald das Werkzeug die Werkzeugabgrenzung erreicht, stoppt der Roboter und deaktiviert sich. Das Pop-Up-Fenster "Robot exceeds orientation limit and performs protective stop." ("Roboter überschreitet Ausrichtungsgrenze und führt einen Schutzstopp aus."). Um die Position und das Ausmaß der Werkzeugbegrenzung zu bestimmen, dient die Begrenzungsrichtung (Limit direction). Zwei Einstellungsmethoden sind dafür möglich:

- Klicken Sie auf ^{QP} neben Limit direction, um die Einstellungen der Werkzeugbegrenzung zu bearbeiten. Hier können Sie den Bezugspunkt (datum point), den Punkt der Zentralachse und den Begrenzungspunkt bestimmen. Durch diese drei Punkte berechnet die Steuerung den konusförmigen Bereich automatisch.
- 2) Geben Sie den Winkel RX, RY, RZ und den Winkel des begrenzten Bereichs (beträgt zwischen 5-180°) ein. Die Winkelangaben RX, RY und RZ sind die Rotationswinkel um die X-, Y- und Z-Achse des Weltkoordinatensystems. Die negative Z-Achse des Weltkoordinatensystems ist die Richtung der Mittellinie des konusförmigen Grenzbereichs. Der begrenzte Bereich ist der Winkel zwischen der Mittellinie des konusförmigen Bereichs und der Begrenzung desselben.

ANMERKUNG

Wenn sich der Roboter bewegt, verschiebt sich der konusförmige Bereich im Weltkoordinatensystem nur entsprechend der Richtung der Bewegung des Roboters.

5.3.6 Dedizierte E/A-Sicherheitseinstellungen

5.3.6.1 CAB 2.1

Die dedizierte Schnittstelle für E/A-Sicherheitseinstellungen für CAB 2.1 wird in der Abbildung 5-30 dargestellt. Sie verfügt über acht Kanäle mit Multiplex-Sicherheits-E/A. Alle digitalen Ein- und Ausgänge unterstützen die gleichen Funktionen.

Deaktivieren Sie den Roboter und schalten Sie ihn aus. Klicken Sie anschließend auf **Settings > Safety Settings > Dedicated Safety I/O**, um die Konfigurationsschnittstelle für die Sicherheits-E/A aufzurufen. Klicken Sie auf das Dropdown-Menü, um den entsprechenden Sicherheits-E/A zu konfigurieren.

<							on Simulat	EL Log	III Signal	JAKA_Doc	f 1 4 f 1898	•••
🚳 System	Settings	(R) Operation Set	ttings 😡	Safety	Settings	ം	Program S	Settings	i C	Hard Com	ware & municat	ion
Joint Limi	oint Limit Robot Orientation Robo		Robot Lim	_imit Safety Zone			Tool Orientation			Dedica	ated Safe	ety I/O
Safety Input		Function selection			Safety Output		Fur	nction se	lection			?
DI1&DI9	None				D01&D09	None						-
DI2&DI10	None			-	D02&D010	None						-
DI3&DI11	None			•	DO3&DO11	None						-
DI4&DI12	None			-	DO4&DO12	None						-
DI5&DI13	None			-	D05&D013	None						-
DI6&DI14	None			-	DO6&DO14	None						-
DI7&DI15	None			-	D07&D015	None						-
DI8&DI16	None			-	D08&D016	None						-
			Cancel	/		$\langle \rangle$						

Illustr. 5-30 Dedizierte E/A-Schnittstellen CAB 2.1

5.3.6.2 MiniCab

Die dedizierte Schnittstelle für E/A-Sicherheitseinstellungen des MiniCab verfügt über zwei Multiplex-Sicherheits-E/A und einem digitalen Sicherheitseingang. Alle vier digitalen Ein- und Ausgänge unterstützen die gleichen Funktionen. Die Ein- und Ausgänge 7 und 8 können nur als **Schutzstopp** (**Protective stop**) oder **Keiner** (**None**) konfiguriert werden. Standardmäßig sind sie als **Schutzstopp** (**Protective stop**) konfiguriert. Eine Risikobeurteilung muss vor der Deaktivierung des Schutzstopps erfolgen. Nach der Deaktivierung des Schutzstopps werden die digitalen Ein- und Ausgänge 6 und 7 automatisch aktiviert und in den standardmäßig eingestellten Zustand gesetzt. Falls Sie den Schutzstopp wieder aktivieren wollen, müssen Sie die digitalen Ein- und Ausgänge 6 und 7 in den **Eingabemodus** (**Input mode**) setzen und **Keiner** (**None**) in der Funktionsleiste auswählen. Deaktivieren und schalten Sie den Roboter aus. Klicken Sie auf **Settings > Safety Settings > Dedicated Safety I/O**, um die Schnittstelle für E/A-Sicherheitseinstellungen aufzurufen. Klicken Sie auf das Dropdown-Menü neben dem entsprechenden Eingang/Ausgang, um ihn zu konfigurieren.

				Simulation Log Signal	997c jk_doc 997c ••
System Sett	ings 🛛 🛞 Operation Se	ettings 😡 Safe	ety Settings	Program Settings	Hardware & Communication
Joint Limit	Robot Orientation	Robot Limit	Safety Zone	Tool Orientation	Dedicated Safety I
afety Input	Function selection		Safety Output	Function selection	?
DI1&DI2 Non	5	-	DO1&DO2 None		
DI3&DI4 Non	9	-	DO3&DO4 None		-
DI6&DI7 Non	2	-			
If safey function s 1. If the pair 2.If the paire	etting is disabled, please check: ad pins has been occupied by other func d pins is in different channel type.	tion in IO panel:			

EINSTELLUNGEN

Illustr. 5-31 Dedizierte E/A-Schnittstellen MiniCab

ANMERKUNG

Eine Schnittstelle kann nicht gleichzeitig digitaler Eingang und Ausgang sein. Die Sicherheits-E/A ist mit dualer Redundanz ausgelegt. Sie müssen ein Paar der E/A-Schnittstellen gleichzeitig auf denselben Zustand einstellen.

5.3.6.3 Beschreibung der Sicherheits-E/A

In den Sicherheitseinstellungen können die Ein- und Ausgänge des Schaltschranks mit Sicherheitssignalen verknüpft werden. Die Ein- und Ausgänge des Schaltschranks können als Sicherheits-E/A konfiguriert werden, um die Sicherheitsfunktionen des Roboters zu steuern und den Sicherheitsstatus des Roboters zu überwachen. Der Sicherheitsstatus ist in folgender Tabelle dargestellt:

Sicherheitseinstellung	Beschreibung CAB 2.1	Beschreibung MiniCab	Тур
	Wenn das	Wenn das	
	Eingangssignal LOW ist,	Eingangssignal HIGH ist,	F in man a
Zusatzliches Not-Aus	wird ein Not-Aus	wird ein Not-Aus	Eingang
	ausgeführt.	ausgeführt.	
	Wenn das	Wenn das	
Zus štelickov Oskutestova	Eingangssignal LOW ist,	Eingangssignal HIGH ist,	F in man a
Zusatzlicher Schutzstopp	wird ein Schutzstopp	wird ein Schutzstopp	Eingang
	ausgeführt.	ausgeführt.	

	Wenn das	Wenn das	
	Eingangssignal von LOW	Eingangssignal von	
Schutzstopp-Reset	zu HIGH wechselt, wird	HIGH zu LOW wechselt,	Eingang
	der Schutzstopp-Reset	wird der Schutzstopp-	
	ausgeführt.	Reset ausgeführt.	
	Wenn das	Wenn das	
Reduzierter Modus	Eingangssignal LOW ist,	Eingangssignal HIGH ist,	
	wird der Roboter in den	wird der Roboter in den	Eingang
	reduzierten Modus	reduzierten Modus	
	versetzt.	versetzt.	
	Wenn die Positionen 1	Wenn die Positionen 1	
	und 3 LOW sind, grenzt	und 3 HIGH sind, grenzt	
	der Roboter die 3-Punkt-	der Roboter die 3-Punkt-	
3-Punkt-Freigabe	Freigabe ein und wenn	Freigabe ein und wenn	Eingang
	die Position 2 HIGH ist	die Position 2 LOW ist	
	die Begrenzung der 3-	die Begrenzung der 3-	
	Punkt-Freigabe ungültig.	Punkt-Freigabe ungültig.	
	Im aktivierten	Im aktivierten	
	Roboterzustand wird die	Roboterzustand wird die	
Kollisionserkennung	Kollisionserkennung des	Kollisionserkennung des	
ausschalten	Roboters beim	Roboters beim fallenden	Eingang
	steigenden Signal	Signal ausgeschaltet.	
	ausgeschaltet.		
	Im aktivierten	Im aktivierten	
	Roboterzustand wird bei	Roboterzustand wird bei	
	steigender Signalflanke	fallender Signalflanke die	
	die	Kollisionsempfindlichkeit	
	Kollisionsempfindlichkeit	des Roboters auf Stufe 1	
	des Roboters auf Stufe 1	gesetzt. Je niedriger der	
Kollisionsempfindlichkeit Stufe 1	gesetzt. Je niedriger der	Wert, desto höher ist die	Eingang
	Wert, desto höher ist die	Kollisionsempfindlichkeit.	
	Kollisionsempfindlichkeit.	Falls mehrere Stufen	
	Falls mehrere Stufen	gleichzeitig ausgelöst	
	gleichzeitig ausgelöst	werden, wird die höhere	
	werden, wird die höhere	Stufe bevorzugt.	
	Stufe bevorzugt.		
	Im aktivierten	Im aktivierten	
	Roboterzustand wird bei	Roboterzustand wird bei	
Kollisionsempfindlichkeit Stufe 2	steigender Signalflanke	fallender Signalflanke die	Eingang
	die	Kollisionsempfindlichkeit	
	Kollisionsempfindlichkeit	des Roboters auf Stufe 2	

5

	des Roboters auf Stufe 2	gesetzt. Je niedriger der	
	gesetzt. Je niedriger der	Wert, desto höher ist die	
	Wert, desto höher ist die	Kollisionsempfindlichkeit.	
	Kollisionsempfindlichkeit.	Falls mehrere Stufen	
	Falls mehrere Stufen	gleichzeitig ausgelöst	
	gleichzeitig ausgelöst	werden, wird die höhere	
	werden, wird die höhere	Stufe bevorzugt.	
	Stufe bevorzugt.		
	Im aktivierten	Im aktivierten	
	Roboterzustand wird bei	Roboterzustand wird bei	
	steigender Signalflanke	fallender Signalflanke die	
	die	Kollisionsempfindlichkeit	
	Kollisionsempfindlichkeit	des Roboters auf Stufe 3	
	des Roboters auf Stufe 3	gesetzt. Je niedriger der	
Kollisionsempfindlichkeit Stufe 3	gesetzt. Je niedriger der	Wert, desto höher ist die	Eingang
	Wert, desto höher ist die	Kollisionsempfindlichkeit.	
	Kollisionsempfindlichkeit.	Falls mehrere Stufen	
	Falls mehrere Stufen	gleichzeitig ausgelöst	
	gleichzeitig ausgelöst	werden, wird die höhere	
	werden, wird die höhere	Stufe bevorzugt.	
	Stufe bevorzugt.		
	Im aktivierten	Im aktivierten	
	Roboterzustand wird bei	Roboterzustand wird bei	
	steigender Signalflanke	fallender Signalflanke die	
	die	Kollisionsempfindlichkeit	
	Kollisionsempfindlichkeit	des Roboters auf Stufe 4	
	des Roboters auf Stufe 4	gesetzt. Je niedriger der	
Kollisionsempfindlichkeit Stufe 4	gesetzt. Je niedriger der	Wert, desto höher ist die	Eingang
	Wert, desto höher ist die	Kollisionsempfindlichkeit.	
	Kollisionsempfindlichkeit.	Falls mehrere Stufen	
	Falls mehrere Stufen	gleichzeitig ausgelöst	
	gleichzeitig ausgelöst	werden, wird die höhere	
	werden, wird die höhere	Stufe bevorzugt.	
	Stufe bevorzugt.		
	Im aktivierten	Im aktivierten	
	Roboterzustand wird bei	Roboterzustand wird bei	
	steigender Signalflanke	fallender Signalflanke die	
Kollisionsempfindlichkeit Stufe 5	die	Kollisionsempfindlichkeit	Eingang
	Kollisionsempfindlichkeit	des Roboters auf Stufe 5	
	des Roboters auf Stufe 5	gesetzt. Je niedriger der	
	gesetzt. Je niedriger der	Wert, desto höher ist die	

	Wert desto höher ist die	Kollisionsempfindlichkeit	
	Kollisionsempfindlichkeit	Falls mehrere Stufen	
	Falls mehrere Stufen	deichzeitig ausgelöst	
	deichzeitig ausgelöst	werden wird die höhere	
	werden wird die höhere	Stufe bevorzugt	
	Stufe bevorzugt	olaio bovoizagi.	
	Im aktivierten	Im aktivierten	
	Roboterzustand wird bei	Roboterzustand wird bei	
	steigender Signalflanke	fallender Signalflanke die	
Kollisionsempfindlichkeit	die	Kollisionsempfindlichkeit	Fingang
Minimalstufe	Kellisionsomnfindlichkeit	dos Pobotors auf das	Lingang
		Minimum goostat	
	Minimum genetat	Minimum geseizt.	
	Minimum gesetzt.	Cabald dia Nat Ava	
	Sobald die Not-Aus-	Sobald die Not-Aus-	
Bediengriff-Not-Aus			Ausgang
	gedruckt wird, ist der	gedruckt wird, ist der	
	Signalausgang LOW.	Signalausgang HIGH.	
	Sobald das System sich	Sobald das System sich	
System-Not-Aus	im Not-Aus-Zustand	im Not-Aus-Zustand	Ausgang
	befindet, ist der	befindet, ist der	
	Signalausgang LOW.	Signalausgang HIGH.	
	Sobald das System sich	Sobald das System sich	
System-Schutzstopp	im Schutzstopp-Zustand	im Schutzstopp-Zustand	Ausgang
	befindet, ist der	befindet, ist der	,
	Signalausgang LOW.	Signalausgang HIGH.	
	Sobald der Roboter sich	Sobald der Roboter sich	
Bewegungsstatus	bewegt, ist der	bewegt, ist der	Ausgang
	Signalausgang LOW.	Signalausgang HIGH.	
	Sobald der Roboter den	Sobald der Roboter den	
	Not-Aus oder	Not-Aus oder	
Stopp-Zustand	Schutzstopp Zustand	Schutzstopp Zustand	Ausgang
	durchführt, ist der	durchführt, ist der	
	Signalausgang HIGH.	Signalausgang LOW.	
	Sobald der Roboter sich	Sobald der Roboter sich	
D. Instanton Marka	im reduzierten Modus	im reduzierten Modus	
Reduzierter Modus	befindet, ist der	befindet, ist der	Ausgang
	Signalausgang LOW.	Signalausgang HIGH.	
	Sobald der Roboter sich	Sobald der Roboter sich	
	nicht im reduzierten	nicht im reduzierten	
Nicht-reduzierter Modus	Modus befindet, ist der	Modus befindet, ist der	Ausgang
	Signalausgang LOW.	Signalausgang HIGH.	

5

	Sobald die	Sobald die	
	Kollisionsempfindlichkeit	Kollisionsempfindlichkeit	
	ausgeschaltet ist, ist der	ausgeschaltet ist, ist der	
Kollisionsempfindlichkeit	Signalausgang LOW.	Signalausgang HIGH.	Ausgang
ausgeschaltet	Der Ausgangszustand	Der Ausgangszustand	
	wird nach Freigabe in	wird nach Freigabe in	
	Echtzeit aktualisiert.	Echtzeit aktualisiert.	
	Sobald die	Sobald die	
	Kollisionsgeschwindigkeit	Kollisionsgeschwindigkeit	
	auf Stufe 1 gesetzt ist, ist	auf Stufe 1 gesetzt ist, ist	
	der Signalausgang LOW.	der Signalausgang	
Kollisionsempfindlichkeit Stufe 1	Der Ausgangszustand	HIGH. Der	Ausgang
	wird nach Freigabe in	Ausgangszustand wird	
	Echtzeit aktualisiert.	nach Freigabe in Echtzeit	
		aktualisiert.	
	Sobald die	Sobald die	
	Kollisionsgeschwindigkeit	Kollisionsgeschwindigkeit	
	auf Stufe 2 gesetzt ist, ist	auf Stufe 2 gesetzt ist, ist	
	der Signalausgang LOW.	der Signalausgang	Ausgang
Kollisionsempfindlichkeit Stufe 2	Der Ausgangszustand	HIGH. Der	
	wird nach Freigabe in	Ausgangszustand wird	
	Echtzeit aktualisiert.	nach Freigabe in Echtzeit	
		aktualisiert.	
	Sobald die	Sobald die	
	Kollisionsgeschwindigkeit	Kollisionsgeschwindigkeit	
	auf Stufe 3 gesetzt ist, ist	auf Stufe 3 gesetzt ist, ist	
Kellisissessenfindlichkeit Stufe 2	der Signalausgang LOW.	der Signalausgang	Ausgang
Kollisionsemptinalichkeit Stule 3	Der Ausgangszustand	HIGH. Der	
	wird nach Freigabe in	Ausgangszustand wird	
	Echtzeit aktualisiert.	nach Freigabe in Echtzeit	
		aktualisiert.	
	Sobald die	Sobald die	
	Kollisionsgeschwindigkeit	Kollisionsgeschwindigkeit	
	auf Stufe 4 gesetzt ist, ist	auf Stufe 4 gesetzt ist, ist	
Kollisionsempfindlichkeit Stufe 4	der Signalausgang LOW.	der Signalausgang	Ausaana
	Der Ausgangszustand	HIGH. Der	Ausgang
	wird nach Freigabe in	Ausgangszustand wird	
	Echtzeit aktualisiert.	nach Freigabe in Echtzeit	
		aktualisiert.	
Kollisionsempfindlichkeit Stufe 5	Sobald die	Sobald die	Ausgang
	Kollisionsgeschwindigkeit	Kollisionsgeschwindigkeit	Ausyany

	auf Stufe 5 gesetzt ist, ist	auf Stufe 5 gesetzt ist, ist	
	der Signalausgang LOW.	der Signalausgang	
	Der Ausgangszustand	HIGH. Der	
	wird nach Freigabe in	Ausgangszustand wird	
	Echtzeit aktualisiert.	nach Freigabe in Echtzeit	
		aktualisiert.	
	Sobald die	Sobald die	
	Kollisionsgeschwindigkeit	Kollisionsgeschwindigkeit	
	auf Minimalstufe gesetzt	auf Minimalstufe gesetzt	
Kollisionsempfindlichkeit	ist, ist der Signalausgang	ist, ist der Signalausgang	Augang
Minimalstufe	LOW. Der	HIGH. Der	Ausgang
	Ausgangszustand wird	Ausgangszustand wird	
	nach Freigabe in Echtzeit	nach Freigabe in Echtzeit	
	aktualisiert.	aktualisiert.	

Tbl. 5-3 Sicherheitsstatus Signale

ANMERKUNG

Aufgrund der unterschiedlichen Hardware-Konfiguration des CAB 2.1 und des MiniCab ist der Kurzschlusszustand des digitalen Eingangs HIGH beim CAB 2.1 und LOW beim MiniCab. Deshalb sind die Pegelbeschreibungen der Sicherheitseingänge entgegengesetzt.

5.3.6.4 Redundanz des Eingangssignals

Die acht Kanäle des digitalen Sicherheitseingangssignals verwenden gleichwertige redundante Eingangssignale. Sobald eines der Sicherheitssignale niedrig ist, wird die Sicherheitsfunktion aktiviert. Folgende Grafik zeigt es am Beispiel der digitalen Eingänge 1 und 9.

- **DI 1** digitaler Eingang 1 (digital Input)
- DI 9 digitaler Eingang 9 (digital Input)
- SF Active Status Status der Sicherheitsfunktion

Safety DI Monitoring Status – Überwachungsstatus der digitalen Sicherheitseingänge t1, t2, t3, t4 - Zeit

Illustr. 5-32 Redundanz Sicherheitssignale

Sobald die Sicherheitsfunktion ausgeschaltet ist, müssen die digitalen Eingänge 1 und 9 innerhalb der Signaltoleranzzeit von niedrig (LOW) zu hoch (HIGH) wechseln. Wenn die Signale 1 und 9 unterschiedlich sind und die Zeit die Toleranzzeit um 1 Sekunde überschreitet, stellt die Sicherheitssteuerplatine (SCB-Safety Control Board) fest, dass der digitale Sicherheitseingang fehlerhaft ist und führt eine Rückfallfunktion des digitalen Sicherheitseingangs durch. Der Fehler des digitalen Sicherheitseingangs kann nur durch erneutes Einschalten des Roboters nach der Wiederherstellung behoben werden. Ist der Fehler nicht behoben, darf der Roboter nicht eingeschaltet werden. Das zur Aktivierung der Sicherheitsfunktion verwendete Signal muss stabil sein, andernfalls bleibt der Roboter stehen und muss wieder neu gestartet werden.

Rückfallfunktion des digitalen Sicherheitseingangs verläuft wie folgt:

- Der Roboter bremst ab und hält an. Sobald der Roboter stillsteht, wird es ausgeschaltet und das Programm pausiert.
- 2) Suchen an den beiden digitalen Eingängen nach den Fehlern und ersetzen Sie das aktuelle Eingangssignal des Ports mit dem niedrigen (LOW) Signal. Der Fehler wird so lange bestehen bleiben, bis Sie den Roboter wieder einschalten und der Fehler überprüft und behoben wird.
- In der App erscheint die Anzeige über einen Fehler der digitalen Sicherheitseingänge. Sobald der Fehler behoben wird, muss der Roboter neu gestartet werden, um die Fehlermeldung auszublenden.

5.4 Programmeinstellungen

5.4.1 Standardprogramm laden

In den Programmeinstellungen können Sie ein Standardprogramm festlegen. Das Standardprogramm wird dann automatisch geladen, sobald der Roboter aktiviert wird.

<	Simulation Log Signal JAKA_Doc f14 f
🔞 System Settings	Operation Settings Safety Settings Program Settings Hardware & Communication
Default Program	Trajectory Record System variable Decelerated Percentage Configuration
	Default program Image: Please select the default program
	Automatically run the program when the robot is enabled
	~

Illustr. 5-33 Standardprogramm

Es gibt drei Einstellungsvarianten für das auszuführende Standardprogramm:

1) Automatisches Laden des eingestellten Standardprogramms (Automatically load the default program): aktivieren Sie die Schaltfläche und die Steuerung lädt das Standardprogramm, sobald der Roboter aktiviert wurde. Nur wenn das Standardprogramm eingestellt ist, die Schaltfläche Automatisches Laden des eingestellten Standardprogramms (Automatically load the default program) aktiviert ist und gleichzeitig das Signal zum automatischen Ausführen des Programms (z. B. Aktivierung der Schaltfläche Automatisches Ausführen des Programms bei Aktivierung des Roboters (Automatically run the program when the robot is enabled) ausgelöst wird, wird das Standardprogramm ausgeführt. Wenn das Standardprogramm eingestellt ist, die Schaltfläche Automatisches Laden des eingestellten Standardprogramms (Automatically load the default program) aktiviert ist, das Signal aber zum automatischen Ausführen des Programms nicht ausgelöst ist, wird kein Programm ausgeführt. In der App erscheint eine Fehlermeldung, wenn das Standardprogramm nicht eingestellt ist oder die Schaltfläche Automatisches Laden des eingestellten Standardprogramms (Automatically load the default program) deaktiviert ist. Wenn Sie das Standardprogramm eingestellt haben, die Schaltfläche Automatisches Laden des eingestellten Standardprogramms (Automatically load the default program) aktiviert ist und ein Programm, welches kein Standardprogramm ist, gestartet wird, wird trotz dessen das Standardprogramm ausgeführt. Die Steuerung erkennt gleichzeitig, ob im aktuell in der Programmieroberfläche geöffneten Programm ungespeicherte Änderungen vorhanden sind. Ist das der Fall, wird das aktuell geöffnete Programm in der Programmieroberfläche angezeigt und die Programmieroberfläche ist ausgegraut. In der App erscheint die Meldung "Das aktuelle Programm ist nicht gespeichert. Bitte überprüfen Sie das, nachdem das Standardprogramm angehalten wurde" ("The current program is not saved. Please check after the default program is
stopped. "). Wenn Sie das nicht tun, wird das Standardprogramm direkt geladen.

- 2) Roboter automatisch aktivieren, sobald er eingeschaltet ist (Automatically enable the robot when it is powered on): Aktivieren Sie die Schaltfläche und der Roboter wird nach dem Einschalten automatisch aktiviert.
- 3) Automatisches Ausführen des Programms, sobald der Roboter aktiviert ist (Automatically enable the Robot, when it is powered on): Aktivieren Sie die Schaltfläche und der Roboter wird nach dem Einschalten automatisch das Standardprogramm oder das aktuell geöffnete Programm ausführen. Wenn kein Standardprogramm eingestellt ist, wird das aktuell geöffnete Programm ausgeführt.

5.4.2 Aufzeichnung von Trajektorien

In der Schnittstelle **Trajectory Record** (**Aufzeichnung von Trajektorien**) können Sie die Trajektorie des Roboters aufzeichnen lassen. Die aktuelle Trajektorie kann aufgezeichnet werden, während der Roboter ein Programm ausführt. Die Trajektoriedateiaufzeichnung kann während der Programmierung durch Aufzeichnungsbefehle der Trajektoriedateien aufgerufen werden.

<			nulation S	Log S	ignal JAKA_Doc	f 1 4 f 1898	
🔞 System Settings	🛞 Operation Settings 😡 Safe	ety Settings	R Program	Settings	Hard Com	lware & municat	ion
Default Program	Trajectory Record	Syst	tem variable	Decele	erated Percent	age Confi	guration
					← (+) 🔅	17.
	Trajectory Record			Operations	5		
	*						
	here is no motion trajectory, click the upper right corn	er "⊕" to start recc	ording, and click "	to stop reco	rding		

Illustr. 5-34 Trajektorien

Um Trajektorien aufzuzeichnen, führen Sie diese Schritte aus:

Klicken Sie auf ⁽²⁾, um die Bearbeitung aufzurufen. Legen Sie die Geschwindigkeit (speed),
 Beschleunigung (acceleration), Genauigkeit der Position (accuracy of the position) und die
 Ausrichtung (orientation) der Trajektorie fest. Falls die Distanz der Trajektorie kurz ist, sollten Sie

die **Genauigkeit der Position (accuracy oft he position)** und die **Ausrichtung (orientation)** auf 0,1 erhöhen. Falls die Positions- oder Ausrichtungsänderung der Trajektorie weniger als die Genauigkeit des eingestellten Werts x10 beträgt, kann die Trajektorie nicht aufgezeichnet werden.

- 2) Klicken Sie auf ⁽¹⁾, es erscheint ein Fenster mit der Frage Aufzeichnung der Trajektorie starten?
 (Start recording the trajectory?). Klicken Sie auf Ja (Yes) und ⁽²⁾ (Aufzeichnung der Trajektorie) erscheint in der Menüleiste am oberen Rand der App
- 3) Bewegen Sie den Roboter im Freedrive-Modus oder manuellen Betrieb.
- Klicken Sie anschließend auf ^(e), um die Aufzeichnung der Trajektorie zu beenden. In der Schnittstelle Aufzeichnung der Trajektorie (Trajectory Record) erscheint die Aufzeichnungsdatei.
- 5) Klicken Sie auf 🦉, um den Dateinamen zu ändern.
- 6) Um die Trajektorie zu reproduzieren, können Sie in der Programmieroberfläche den Befehl zur Aufzeichnung der Trajektorie aufrufen.

Die Wiedergabe der Trajektorie zeichnet nur Weginformationen auf, keine Informationen über die Geschwindigkeit. Wenn der Roboter im Ruhezustand ist, werden keine Wegpunkte dupliziert. Falls die Aufzeichnung nicht manuell angehalten wird, wird die Aufzeichnung der Trajektorie automatisch beendet und eine Aufzeichnungsdatei erzeugt, sobald die Aufzeichnung 100.000 Zeilen erreicht hat.

5.4.3 Systemvariablen

Die JAKA-App kann Systemvariablen für alle Programme erstellen. Systemvariablen können nur digitale Variablen im Bereich von -65535 bis 65635 sein. Diese werden unabhängig in der Steuerung gespeichert. Die Variablenwerte werden nicht verändert oder zurückgesetzt, unabhängig davon, ob das Programm startet oder endet, der Roboter oder der Schaltschrank ein- oder ausgeschaltet werden. Systemvariablen können in jedem Programm aufgerufen und geändert werden.

<				ulation Sir	Log Signal J	f 1 AKA_Doc_	.4f 398
6	System Settings	Operation Settings	Safety Settings	R Program	Settings	Hardwa Commu	re & nication
	Default Program	Trajectory Re	ecord	System variable	Decelerated P	ercentage (Configuration
	Max: 100 variables					\odot	\oplus
	Varia	ble Name	Value		Operations		
		There is r	no system variable, please clic	k "⊕" to add			
			\sim				

Illustr. 5-35 Systemvariablen

Klicken Sie auf ⁽⁺⁾, um die Bearbeitung der Systemvariablen aufzurufen. Geben Sie den Variablennamen und den Anfangswert ein und klicken Sie auf **OK**, um eine Systemvariable hinzuzufügen.

Bis zu 100 Systemvariablen können gespeichert werden. Systemvariablen können auch in der Programmieroberfläche als Variablenbefehl erstellt werden.

5.4.4 Prozentuelle Verlangsamung der Programmgeschwindigkeit

Diese App-Funktion wird verwendet, um die Bewegungsgeschwindigkeit des Roboters bei der Ausführung des Programms entsprechend anzupassen. Sie können die Stufe 1 der prozentuellen Verlangsamung wie am Beispiel der Abbildung 5-36 gezeigt auf 76% einstellen. Der Roboter bewegt sich bei der Ausführung des Programms mit 76% der normalen Geschwindigkeit. Auf der Programmieroberfläche wird die Geschwindigkeit als 76% angezeigt (siehe Abbildung 5-37). Der Prozentsatz der Verlangsamung der Stufe 2 sollte kleiner sein als der Wert der Stufe 1. Nachdem Sie die Werte in der Schnittstelle **Decelerated Percentage Configuration (Prozentuelle Verlangsamung der Programmgeschwindigkeit**) festgesetzt haben, muss der Modus durch die Konfiguration der E/A-Funktion aktiviert werden. Klicken Sie dafür auf Home > I/O, um die E/A Konfigurationsschnittstelle aufzurufen. Konfigurieren Sie den digitalen Eingang als verlangsamten Modus Stufe 1 oder Stufe 2. Wenn beide Stufen gleichzeitig eingestellt sind, wird die Stufe 2 vorrangig ausgeführt. Die prozentuelle Verlangsamung funktioniert nur bei der Ausführung des Programms und nicht im Freedrive-Modus oder dem JOG-Modus (Robotersteuerung über die manuelle Bedienoberfläche).

<				Simulation	Log Signa	JAKA_Doc	f 1 4 f 1898	•••
System Settings	(C) Operation Settings	Safety Set	ttings 💦	Program S	Settings	Hard Com	ware & municati	on
Default Program	Trajectory Re	ecord	System var	iable	Decelerat	ed Percenta	ge Config	juration
	Level 1:		66%					
	Level 2:		Ŏ—					
		Cancel	ОК					
		~						

Illustr. 5-36 Prozentuelle Verlangsamung

Illustr. 5-37 Prozentuelle Verlangsamung Anzeige Programmieroberfläche

5.5 Kommunikationsprotokolle

5.5.1 Modbus

Die Kommunikationsprotokolle Modbus TCP/IP und Modbus RTU werden von der Robotersoftware unterstützt. Die Einstellung ist wie folgt:

- 1) Modbus TCP/IP: der Roboter fungiert als Server. Schließen Sie den Roboter an den unteren Netzwerkanschluss des Schaltschranks an, wählen Sie den Modus Modbus TCP/IP, geben Sie die Portnummer ein (der Bereich liegt zwischen 0 und 65535) und verwenden Sie keine gängigen Ports wie 8080 oder 80. Der Standardport ist 6502. Wenn der Client auf den Server zugreift, geben Sie den konsistenten Port ein und klicken Sie auf OK, nachdem die Parameter geändert wurden. Ein Anzeigefenster erscheint für kurze Zeit mit der Information "Erfolgreich eingestellt" (Set successfully). Schalten Sie den Schaltschrank wieder aus und anschließend ein, um eine Verbindung herzustellen.
- 2) Modbus RTU: der Roboter fungiert als "Slave" (Sklave). Standardprodukte werden nicht mit dieser Funktion ausgestattet. Sie muss zusätzlich ausgestattet werden. Wählen Sie den Modbus RTU-Modus, geben Sie die Modbus RTU-Parameter ein und klicken Sie auf OK. Ein Anzeigefenster erscheint für kurze Zeit mit der Information "Erfolgreich eingestellt" (Set successfully). Schalten Sie den Schaltschrank wieder aus und anschließend ein, um eine Verbindung herzustellen.

<	Simulation Log Signal JAKA_Doc
System Settings	Operation Settings Safety Settings Program Settings Hardware & Communication
Modbus Parameter Settings	End Sensor PROFINET Settings Ethernet/IP Settings Auxiliary Hardware Settings
	Modbus TCP/IP Port: 502 Modbus RTU Slave node number: Please enter numbers within 1-128 Baud rate: 4800 Data bit length: 8 Stop bit length: 1 Parity check: Even parity Cancel OK

Illustr. 5-38 Modbus Einstellungen

Nachdem Sie den Client/Master angeschlossen haben, können Sie ein Programm in dem

Programmierinterface entsprechend der Registeradresse und dem Funktionscode in der Modbus-Adresstabelle erstellen, um den Roboterstatus zu lesen oder das E/A-Signal des Roboters zu steuern (siehe Anhang Modbus E/A-Adresstabelle).

5.5.2 Sensor am Roboterflansch

Als optionale Ausstattung kann ein Kraftsensor (Force Control) am Roboterflansch konfiguriert werden. Klicken Sie auf Hardware & Communication > End Sensor. Weitere Details erfahren Sie im Benutzerhandbuch der JAKA Force Control Produkte.

<			Di Simulat Log Signal JAKA_Doc f14f
System Settings	Operation Settings	Safety Settings	Program Settings Hardware & Communication
Modbus Parameter Settings	End Sensor	PROFINET Settings	Ethernet/IP Settings Auxiliary Hardware Settings
			Sensor type: SensorII Clit
Payload Settings Sense Tool (manual) Q: 0.000 kg X: 0.000 m Y: 0.000 m	sor Limit Tool (auto) Set Start Position m Set End Position m Trial Run		Force sensor
Z: 0.000 m	m D Start Identification	n	Low pass filter: 0.000 Hz
		ОК	

Illustr. 5-39 Kraftsensor

5.5.3 PROFINET

Das Kommunikationsprotokoll PROFINET wird von der Robotersoftware unterstützt. Der Roboter kann als PROFINET-Slave-Station mit externen Geräten verbunden werden. Schließen Sie den Roboter an den unteren Netzwerkanschluss des Schaltschranks an, gehen Sie zu den Einstellungen (Settings) > Hardware & Kommunikation (Hardware & Communication) > PROFINET Einstellungen (PROFINET Settings) und aktivieren Sie die PROFINET-Funktion (Enable-Schaltfläche).

Illustr. 5-40 PROFINET Einstellungen

- State: Zeigt den Verbindungsstatus zwischen dem Schaltschrank und den externen PROFINET-Geräten.
- C: Mit der Schaltfläche wird die PROFINET-Funktion ein- bzw. ausgeschaltet (standardmäßig ist die Funktion ausgeschaltet). Nach dem Ein- bzw. Ausschalten muss der Schaltschrank neu gestartet werden.
- ^(S): Die Reset-Funktion setzt die Konfiguration des PROFINET-Geräts (Name und IP-Adresse) zurück. Der Standardname ist **jaka** und die Standard-IP-Adresse ist **192.168.0.50**.

Die PROFINET-Funktion ermöglicht die Kommunikation mit externen SPS-en. Wenn diese aktiviert ist, zeigt die E/A-Schnittstelle die PROFINET-E/A-Informationen an (siehe Anhang PROFINET-Adresstabelle).

5.5.4 Ethernet/IP

Das Kommunikationsprotokoll Ethernet/IP wird von der Robotersoftware unterstützt. Der Roboter kann als Ethernet/IP-Slave-Station mit externen Geräten verbunden werden. Schließen Sie den Roboter an den unteren Netzwerkanschluss des Schaltschranks an, gehen Sie zu den **Einstellungen (Settings)** > **Hardware & Kommunikation (Hardware & Communication)** > **Ethernet/IP Einstellungen (Ethernet/IP Settings)** und aktivieren Sie die Ethernet/IP-Funktion (Enable-Schaltfläche).

System Settings (Operation Settings	Safety Settings	Program Settings	Hardware &
Modbus Parameter Settings			00 Hoghan Bettings	Communication
	End Sensor	PROFINET Settings	Ethernet/IP Settings	Auxiliary Hardware Setti
	Stat	te: Disabled		
	Enabl	Effective after restart	ing the robot system	

Illustr. 5-41 Ethernet/IP Einstellungen

- State: Zeigt den Verbindungsstatus zwischen dem Schaltschrank und den externen Ethernet/IP-Geräten.
- •
- C : Mit der Schaltfläche wird die Ethernet/IP-Funktion ein- bzw. ausgeschaltet (standardmäßig ist die Funktion ausgeschaltet). Nach dem Ein- bzw. Ausschalten muss der Schaltschrank neu gestartet werden.

Die Ethernet/IP-Funktion ermöglicht die Kommunikation mit externen SPS-en. Wenn diese aktiviert ist, zeigt die E/A-Schnittstelle die Ethernet/IP-E/A-Informationen an (siehe Anhang Ethernet/IP-Adresstabelle).

5.5.5 Weitere Hardware-Einstellungen

Das Roboterende ist mit drei Tasten ausgestattet: die Pause/Resume Taste, die Free-Taste und die Point-Taste. Klicken Sie auf **Einstellungen (Settings)** > **Hardware & Kommunikation (Hardware & Communication)** > **Weitere Hardware Einstellungen (Auxiliary Hardware Settings)**, um die drei Tasten und die Stromversorgung des Schaltschranks zu konfigurieren. Folgende Konfigurationen der drei Tasten sind möglich:

- 1) **Pause/Resume Taste (Ring-shaped light button)**: deaktiviert, Programm anhalten oder ausführen, Freedrive-Modus
- 2) Free-Taste: deaktiviert, Freedrive-Modus
- 3) **Point-Taste**: deaktiviert, Position speichern
- 4) Stromversorgung des Schaltschranks (Control cabinet power supply): Konfiguration

Stromspannung des Schaltschranks. Falls die Stromversorgung des Schaltschranks nicht 220V AC entspricht, muss im Dropdown-Menü die Option Sonstige (Other) gewählt werden. Um die Optionen anzeigen zu lassen, ist eine Systemsteuerungsplatine (SCB – System Control Board) mit einer Version von mindestens 02_57 erforderlich.

<			Simulation Log	f14f Signal JAKA_Doc
System Settings	Operation Settings	Safety Settings	Program Settings	Hardware & Communication
Modbus Parameter Settings	End Sensor	PROFINET Settings	Ethernet/IP Settings	Auxiliary Hardware Settings
	Ring-shaped light but	con		
	Disabled		×	
	FREE button			
	Freedrive mode		•	
	POINT button			
	Record the position		•	
	Control cabinet power	supply		
	Other		•	
		\sim		

Illustr. 5-42 Hardware-Einstellungen

5.5.6 TIO

Am Roboterende befindet sich eine kleine E/A-Schnittstelle mit der Bezeichnung TIO (TIO – Tool I/O). Diese dient als Schnittstelle zwischen Roboter und externen Geräten bzw. Werkzeugen. Die TIO-Schnittstelle unterstützt zwei digitale Eingänge, zwei digitale Ausgänge und zwei analoge Eingänge. Zwei digitale Ausgänge können in Hochgeschwindigkeits-RS485-Multiplex-Kanäle umgewandelt werden. Zwei analoge Eingänge können in Nidriggeschwindigkeits-RS485-Multiplex-Kanäle umgewandelt werden. Gleichzeitig unterstützt die TIO-Schnittstelle einen konfigurierbaren Ausgangsspannung (12V, 24V, OFF) zur Stromversorgung externer Geräte. Die TIO-Schnittstelle kann unter **Einstellungen (Settings)** > **Hardware & Kommunikation (Hardware & Communication)** > **Werkzeug E/A (Tool I/O)** konfiguriert werden.

ANMERKUNG

Die Funktion ist nur verfügbar für die TIO-Schnittstelle V3.

5.5.6.1 Konfiguration der Ausgangsspannung

Sie können bei der Ausgangsspannung zwischen 12V und 24V wählen und damit die Spannungsanforderung des Werkezugs am Roboterende berücksichtigen.

<								t Real Rot	Log 1k s	trength :KKK JKKK	2f58 c728	
6	System Setti	ings 🔇	Operation S	Settings	Safety	Settings	S Pr	ogram Se	ttings	Hardy Comr	ware & nunicatio	on
Mod	lbus Paramete Settings	r End	Sensor	PROFI	NET Settings	Ethernet/IF	9 Settings	Auxiliar Se	y Hardwar ettings	e	Tool I/O	
	Semaphore O	Voltage output utput enable: (utput voltage: (Debugging Disabled 24V	• Enabl	ed							
					C	Ж						
					/	\sim						

Illustr. 5-43 Konfiguration Ausgangsspannung TIO

5.5.6.2 Konfiguration RS485

Sie können zwei RS485-Kanäle konfigurieren. Dazu müssen erst die entsprechenden Pins in RS485-Kanäle umgewandelt werden. Als Beispiel dazu dient der RS485-Kanal 1. Der Pin des digitalen Ausgangs wird auf den RS485-Kanal 1 umgewandelt.

<				Robot Rea	کېکې الله Settings Log	? Help	Link strenç Ki		2158 c728	•••
Control Cabinet	Tool	Modbus	PROFINET	Ethernet/IP					Edit Run	Address
Digital Input			Click name to edit	Digital Output				Click nan		
0		I/O	Settings		OFF					
toolDI1	toolDI2		ID: 0		oolDO2					
			Name: toolDO1							
		Funct	ion Selection None	•	Ð					
Analog Input		Mod	e settings: Reuse as R	S485 channel 1 🔻						
484.000 toolAl1	479.000 toolAl2		Cancel	ОК						

Illustr. 5-44 RS485 Kanal

Sobald der vorige Schritt abgeschlossen ist und Sie auf OK klicken, erscheint folgendes Fenster:

Digital Output	RS485 configuration	Click name to edit
OFF	OFF	
toolDO1	toolDO2	

Illustr. 5-45 Konfigurierung RS485

Klicken Sie auf **RS485 configuration (RS485 Konfigurierung)**, um die RS485-Kanal-Konfigurierungsschnittstelle aufzurufen.

<		al Robot R	Settings Log	(?) Help a	rength Lir JKKKKKK	2158 c728	
Control Cabinet Tool	Modbus PROFINE RS485 Channel 1 Configura	ET Ethernet/IP ation	×			Edit Run	Address
Digital Input	Modbus RTU R	AS485 transparent O Torc ransmission O Torc ase enter numbers within 1128	que sensor	ation	Click nar		
	Baud rate: 1: Data bit length: 8	15200					
Analog Input	Stop bit length: 1 Parity check: N Cancel	lo parity					

Illustr. 5-46 Konfigurierung RS485 Kommunikationsparameter

In dieser Schnittstelle müssen Sie den Modus des RS485-Kanals einstellen. Sie können drei verschiedene Modi einstellen:

- **Pass-through-Modus**: zurzeit werden keine Geräte durch diesen Modus unterstützt (kommen in späteren Versionen dazu).
- Modbus RTU: unterstützt verschiedene Greifer und andere Geräte.
- Drehmomentsensor-Modus (Torque sensor): Verbindung mit dem Drehmomentsensor des jeweiligen Modells. Force Sensor Typ 6 ist mit dem TIO kompatibel.

ANMERKUNG

Der Drehmomentsensor wird nur von dem RS485-Kanal 1 unterstützt. Externe Geräte wie Greifer werden von beiden RS485-Kanälen unterstützt.

Unabhängig vom Modus des RS485-Kanals müssen die Parameter des RS485-Kanals konfiguriert werden, einschließlich der Baudrate (maximal 230400), Datenbits (8/9), Stoppbits (1/2) und Paritätsbits (ungerade/gerade/keine Parität). Wenn der Kanalmodus auf Modbus-RTU eingestellt ist, muss zusätzlich die Modbus-Slave-Knoten-ID angegeben werden.

Con the second

ANMERKUNG

Der Drehmomentsensor wird nur von dem RS485-Kanal 1 unterstützt. Externe Geräte wie Greifer werden von beiden RS485-Kanälen unterstützt.

5.5.6.3 Drehmoment-Sensor

Das TIO unterstützt Force Sensor Typ 6 Drehmoment-Sensoren. Für mehr Informationen siehe das

Benutzerhandbuch der Force Control Produkte oder kontaktieren Sie JAKA.

5.5.6.4 Greifer

TIO unterstützt derzeit verschiedene Greifer mit dem Modbus RTU Kommunikationsmodus. Bestätigen Sie, bevor Sie den Greifer mit dem TIO verbinden, die Definition des Werkzeuganschlusses, um den korrekten Anschluss der Drähte sicherzustellen.

5.5.6.5 Semaphore

Wenn Sie digitale Ausgänge oder analoge Eingänge im Modbus RTU Modus konfigurieren, können Sie die Semaphore-Parameter von Modbus-Geräten unter **Einstellungen (Settings)** > **Hardware & Kommunikation (Hardware & Communication)** > **Werkzeug E/A (Tool I/O)** konfigurieren und anschließend den Zustand der Signale durch Aktualisierungs- und Abfragevorgänge überprüfen.

<		See Real Roy	bç Log ngth Link 3KKKKK j 21	58 ••• 28
System Settings	Operation Settings 😡 Safe	ty Settings 🥂 💦 Program S	Settings Hardware Communi	& cation
Modbus Parameter Settings	End Sensor Add Semaphore	Auxit	lary Hardware Tool Settings	I/O
Semaphore Voltage of Identifier	utput Debugging Identifier RS485 channel ID R Register address Refresh frequency Cancel There is no semaphore	S485 channel 1 coil state •	Semaphore Operations	Ð

Illustr. 5-47 Semaphore

Die einzelnen Semaphore-Einstellungen werden wie folgt definiert:

- Identifier: eindeutiger Identifikator des Semaphors (Unicode und Sonderzeichen werden nicht unterstützt), der zur Aktualisierung, Erfassung und dem Löschen verwendet wird.
- RS485-Kanal-ID: dient zur Festlegung des TIO RS485-Kanals als Kanal 1 oder Kanal 2.
- Type: der Datentyp des Semaphors. Dieser Parameter entspricht dem Modbus-Funktionscode (01 ist ein Spulenregister, 02 ist ein diskreter Eingang, 03 ist ein Halteregister und 04 ein Eingangsregister. Andere werden nicht unterstützt).

- Register address: die Adresse des Modbus-Registers, das dem Semaphor entspricht und wird in Dezimalzahlen ausgedrückt. Diese Adresse wird mit der RS485-Kanalkonfiguration und dem Semaphortyp kombiniert, um auf das entsprechende Register des Modbus RTU-Slaves zuzugreifen. Bevor Sie die Semaphore-Parameter einstellen, müssen Sie den TIO-Multiplex-Kanal in einen RS485-Kanal umwandeln und auf den Modbus RTU-Modus einstellen. Die Semaphor-Konfiguration geht durch die Änderung des Modus oder des Pin-Multiplexings verloren.
- Refresh frequency (Aktualisierungsfrequenz): nachdem die Semaphor-Konfiguration abgeschlossen wurde, können die Semaphore in dieser Schnittstelle überwacht werden oder direkt im Programm verwendet werden. Beide Methoden bieten Refresh- und Query-Schnittstellen für Semaphore. Die Aktualisierung löst eine Dateninteraktion zwischen dem Schaltschrank und dem TIO-Greifer aus. Weil die Interaktion zwischen Schaltschrank und externem TIO-Gerät asynchron mit dem Refresh-Befehl erfolgt, müssen Sie nach dem Refresh eine gewisse Zeit (empfohlen 100 ms) warten, um sicherzustellen, dass der aktualisierte Wert erhalten wird. Sie können die Aktualisierungsfrequenz einstellen. Wenn die Frequenz 0 ist, wird nur eine Aktualisierung der entsprechenden Zahl oft ausgeführt. Falls es nur eine Gruppe von Semaphoren ist, ist die maximale Aktualisierungshäufigkeit standardmäßig auf 20 eingestellt. Falls es mehrere Gruppen von Semaphoren gibt, reduzieren Sie bitte die Aktualisierungsfrequenz auf unter 5. Klicken Sie auf die Refresh-Schaltfläche, um den Wert des Semaphors manuell zu aktualisieren.
- Semaphore löschen: klicken Sie auf Delete (Löschen) auf der rechten Seite des entsprechenden Semaphors. Bestätigen Sie in der aufgetauchten Schnittstelle den Vorgang.

5.5.6.6 Übermittlung eines Sofortbefehls

Der Sofortbefehl bezieht sich hauptsächlich auf den Sofortbefehl des Schaltschranks an den externen Greifer des TIO. Das inkludiert die Positionskontrolle, die Geschwindigkeitskontrolle und die Kraftkontrolle des Greifers.

ANMERKUNG

Wenn Sie die Daten des Sofortbefehls eingeben, brauchen Sie nur die Befehlsdaten zu schreiben und der CRC-Prüfwert wird automatisch hinzugefügt.

Sofortbefehle können auch in der **Debugging** Schnittstelle übermittelt werden. Sie können hexadezimale Daten oder oktale Datenbefehle eingeben und auf **OK** klicken.

System Setti	ngs 🔇	Operation S	Settings 🤯 Safety	Settings	Program Settings	Ha Co	rdware & mmunicatio
dbus Parameter Settings	Enc	Sensor	PROFINET Settings	Ethernet/IP Setting	gs Auxiliary Hard Settings	ware	Tool I/O
Semaphore	Voltage output	Debugging					
	Channel	RS485 channe	11 🔽				
	Туре	CRC 16 bit (Mo	odbus)				
	Data	01 06 01 03 00	00 00				
	4		<u></u>			1	

Illustr. 5-48 Debugging Sofortbefehl

- Klicken Sie 🗐, um Daten zu bearbeiten.
- Klicken Sie 🗟, um Debugging-Daten zu löschen.
- Klicken Sie (+), um Debugging-Daten hinzuzufügen.
- Klicken Sie 🔟, um bestimmte Debugging-Daten zu löschen.
- Klicken Sie ^{II}, um Debugging-Daten in das Textfeld zu schreiben.

5.5.6.7 TIO-Unterstützung bei der Programmierung

Kommunikationsbefehle in der **Programming**-Schnittstelle können zur Aktualisierung und Abfrage der Semaphore verwendet werden. Die Definition, Änderung und das Löschen der Semaphore erfolgen in der **Debugging**-Schnittstelle. Klicken Sie die Help (Hilfe) Schaltfläche in dem Programmierinterface, um die Befehlsbeschreibungen zu erhalten.

5.5.7 Bremsspannung

Der MiniCab verfügt über einen integrierten Bremsspannungskreis, um die durch die Verzögerung und das Abbremsen des Roboters erzeugte elektromotorische Kraft abzubauen. Wenn Sie eine externe Stromversorgung nutzen, muss diese eingestellt werden, damit der Roboter nicht durch den Überspannungsschutz abgeschaltet oder die Steuerung beschädigt wird. Schalten Sie den Roboter aus, bevor Sie die Bremsspannung einstellen. Die Startspannung des Bremsregisters (V_{Brake}) verhält sich zu der Eingangsspannung (V_{IN}) wie V_{Brake} \geq (V_{IN} + 3). Die Tabelle zeigt den empfohlenen V_{Brake}-Wert je nach V_{IN} und Stromversorgungsart.

Art der Stromversorgung	Spannung V _{IN} ¹	Anlaufspannung des Bremswiderstands V _{Brake} ³
48V-Modul-Stromversorgung	48V	51V
48V-Lithium-Akku	54,6V	58V
24V-Modul-Stromversorgung ²	24V	27V

Tbl. 5-4 Bremsspannung

¹ Dieser Wert darf 60V nicht überschreiten. Falls die Eingangsspannung 56V überschreitet, müssen Sie die Überspannungsschwelle des Roboters ändern.

² Nur für den MiniCobo.

³ Wenn die Einstellung $V_{Brake} \ge (V_{IN} + 1)$ ist, führt die Steuerung einen Einschaltschutz durch, die App zeigt folgende Meldung an: "Roboterspannung oder Konfigurationsfehler der Spannung" (Robot voltage or voltage configuration error."

6 Elektrische Ein- und Ausgänge

Die elektrischen Ein- und Ausgänge des Schaltschranks können über die **I/O**-Schnittstelle (E/A-Schnittstelle) angezeigt und eingestellt werden. Bei der Einstellung des E/A-Moduls muss der Roboter ausgeschaltet sein. Die Ein- und Ausgänge sind standardmäßig in Schaltschrank-E/A, Werkzeug-E/A, Modbus-E/A, PROFINET-E/A und Ethernet/IP-E/A aufgeteilt.

Illustr. 6-1 E/A-Interface

Klicken Sie 🕮, um Modbus-, PROFINET- und Ethernet/IP-Adresstabellen anzeigen zu lassen. Durch Klicken auf 🕐 werden E/A-Funktionen angezeigt.

6.1 Überblick über die E/A-Funktionen

6.1.1 Funktionen der digitalen Eingänge

Sie können in der E/A-Schnittstelle die Funktion der digitalen Eingänge (in weiteren Beschreibungen auch als DI, engl. für "digital Input" bezeichnet) mittels Dropdown-Menü einstellen. Klicken Sie anschließend auf **OK**. Wenn das Signal des digitalen Eingangs (DI) ausgelöst wird, wird die eingestellte Funktion aktiviert. Folgende Funktionen werden unterstützt:

Funktion	Beschreibung	Auslöser	
	Wenn der DI von Run programm		
	(Programm ausführen) ausgelöst wird,		
	führt der Roboter das geladene		
	Programm in dem		
/_	Programmierinterface aus. Dieser DI		
Run Program / Programm	wird verwendet, um das angehaltene	Signal der steigenden	
austuhren	Programm erneut auszuführen. Das	Flanke	
	auszuführende Programm muss vorher		
	gespeichert werden, da ansonsten das		
	zuletzt gespeicherte Programm in dem		
	Programmierinterface ausgeführt wird.		
	Wenn der DI von Pause programm		
	(Programm pausieren) ausgelöst wird,		
Pause program / Programm	pausiert der Roboter das geladene	Signal der steigenden	
pausieren	Programm in dem	Flanke	
	Programmierinterface.		
	Wenn der DI von Resume programm		
	(Programm fortsetzen) ausgelöst wird,		
Resume program / Programm	setzt der Roboter das geladene	Signal der steigenden	
tortsetzen	Programm in dem	Гапке	
	Programmierinterface fort.		
	Wenn der DI von Stop programm		
Stop program / Programm	(Programm anhalten) ausgelöst wird,	Signal dar staigandan	
anhalton	hält der Roboter das geladene		
amaten	Programm in dem	FIGHTRE	
	Programmierinterface an.		
Bower on robot / Bobotor	Wenn der DI von Power on robot	Signal dar steigandan	
	(Roboter einschalten) ausgelöst wird,		
emschallen	wird der Roboter eingeschaltet.	FIALIKE	
Dower off rebot / Deboter	Wenn der DI von Power off robot	Signal dar steigandan	
	(Roboter ausschalten) ausgelöst wird,		
ausschähen	wird der Roboter ausgeschaltet.	гапке	
Enchle the rebet / Debeter	Wenn der DI von Enable the robot	Signal dar steigandan	
	(Roboter aktivieren) ausgelöst wird,		
aktivieren	wird der Roboter aktiviert.	гапке	
Dischle the vehet / Debeter	Wenn der DI von Disable the robot	Circal das staisandan	
	(Roboter deaktivieren) ausgelöst wird,	Signal der Steigenden	
Geaktivieren	wird der Roboter deaktiviert.	галке	
Level 1 decelerated mode /	Wenn der DI von Level 1 decelerated	Niedrigen Cirrel	
Verlangsamter Modus Stufe 1	mode (Verlangsamter Modus Stufe 1)	Nieuriges Signai	

6

	ausgelost wird, verlangsamt der	
	Roboter seine Bewegung und geht in	
	die Stufe 1 des verlangsamten Modus	
	über.	
	Wenn der DI von Level 2 decelerated	
	mode (Verlangsamter Modus Stufe 2)	
Level 2 decelerated mode /	ausgelöst wird, verlangsamt der	Niadaina a Oisea al
Verlangsamter Modus Stufe 2	Roboter seine Bewegung und geht in	Niedriges Signai
	die Stufe 2 des verlangsamten Modus	
	über.	
	Wenn der DI von Safeguard stop	
Safeguard stop /	(Sicherheitsstopp) ausgelöst wird, hält	Niedriges Signal
Sicherheitsstopp	der Roboter an.	
	Wenn der DI von Return to initial	
	position (In Ausgangsposition	
	zurückkehren) ausgelöst wird, kehrt der	
Return to initial position / In	Roboter in die Ausgangsposition,	Signal der steigenden
Ausgangsposition	welche in Safety Settings	Flanke
zurückkehren	(Sicherheitseinstellungen) > Robot	
	Orientation (Roboterausrichtung)	
	Wonn der Diven Clear adligion	
		Cinn al dan atainan dan
Kollisionswarnung loschen	ausgelost wird, wird die	Flanke
	Kollisionswarnung gelöscht.	
	Wenn der DI von Freedrive mode on	
Freedrive mode on / Freedrive-	(Freedrive-Modus eingeschaltet)	Signal der steigenden
Modus eingeschaltet	ausgelöst wird, geht der Roboter in den	Flanke
	Freedrive-Modus über.	
	Wenn der DI von Freedrive mode off	
Freedrive mode off / Freedrive-	(Freedrive-Modus ausgeschaltet)	Signal der steigenden
Modus ausgeschaltet	ausgelöst wird, verlässt der Roboter in	Flanke
	den Freedrive-Modus.	

Tbl. 6-1 Funktionen digitale Eingänge

ANMERKUNG

Der Prozentsatz des verlangsamten Modus Stufe 2 sollte kleiner sein als der Prozentsatz der Stufe 1. Dieser wird unter **Settings > Program Settings > Decelerated Percentage Configuration** eingestellt. Die Auslösung der Funktionen erfolgt durch die Erkennung des Flankensignals. Durch Schwankungen der Netzwerkkommunikation verursachte Verzögerungen können die Auslösung der Funktion beeinträchtigen. Es wird daher empfohlen, das Pegelsignal vor und nach dem Flankensignal (steigende oder fallende Flanke) mindesten 500 ms zu halten.

6.1.2 Funktionen der digitalen Ausgänge

Sie können in der E/A-Schnittstelle die Funktion der digitalen Ausgänge (in weiteren Beschreibungen auch als DO, engl. für "digital Output" bezeichnet) mittels Dropdown-Menü einstellen. Klicken Sie anschließend auf **OK**. Folgende Funktionen werden unterstützt:

Funktion	Beschreibung	Auslöser
ldle / Leerlauf	Der Roboter führt kein Programm aus.	Signal hoch (High)
Program paused / Programm pausiert	Das geladene Programm in dem Programmierinterface ist pausiert.	Signal hoch (High)
Program running / Programm wird ausgeführt	Das geladene Programm in dem Programmierinterface wird ausgeführt	Signal hoch (High)
Error / Fehler	Der Kollisionsalarm des Roboters wird ausgelöst.	Signal hoch (High)
Robot powered on / Roboter eingeschaltet	Der Roboter ist eingeschaltet.	Signal hoch (High)
Robot enabled / Roboter aktiviert	Der Roboter ist aktiviert.	Signal hoch (High)
Moving / Roboter bewegt sich	Der Roboter ist in Bewegung.	Signal hoch (High)
Stationary / Stillstand	Der Roboter führt kein Programm aus und bewegt sich nicht.	Signal hoch (High)
Control cabinet powered on / Schaltschrank eingeschaltet	Der Schaltschrank ist eingeschaltet.	Signal hoch (High)
Emergency stop state / Notstopp	Der Roboter hat angehalten, ist deaktiviert und ausgeschaltet.	Signal hoch (High)
Safeguard stop state / Sicherheitstopp	Der Roboter hat angehalten.	Signal hoch (High)
Initial position / Ausgangsposition	Der Roboter ist in seiner Ausgangsposition, welche in Safety Settings (Sicherheitseinstellungen) > Robot Orientation	Signal hoch (High)

	(Roboterausrichtung) eingestellt ist.		
Freedrive state / Freedrive-	Der Roboter befindet sich im Freedrive-	-	
Modus	Modus.	Signal noch (Hign)	
Collision state / Kollision	Der Roboter hat eine Kollision erfahren.	Signal hoch (High)	
Level 1 decelerated mode /	Der Roboter befindet sich im		
Verlangsamter Modus Stufe 1	verlangsamten Modus Stufe 1.	Signai noch (Hign)	
Level 2 decelerated mode /	Der Roboter befindet sich im		
Verlangsamter Modus Stufe 2	verlangsamten Modus Stufe 2.	Signal noch (Hign)	

Tbl. 6-2 Funktionen digitale Ausgänge

6.2 Ein- und Ausgänge am Schaltschrank

6.2.1 CAB 2.1

Das CAB 2.1 bietet 16 digitale Eingänge, 16 digitale Ausgänge und 2 Analoge Signale. Sobald das CAB 2.1 angeschlossen ist, werden in der E/A-Schnittstelle die tatsächlichen Signale am Schaltschrank angezeigt. Andere Ein- und Ausgänge werden durch Ziehen des roten Schiebereglers auf der rechten Seite angezeigt. Das CAB 2.1 ist ein PNP-Typ, welcher durch 24V ausgelöst wird.

<					ulation Sir Settings Log	? II	f14f I JAKA_Doc_
Control Cabinet	Tool		Modbus	PROFINET	Ethernet/IP		Delete Add Edit Run Address
Digital Input				Click name to edit	Digital Output		Click name to edit
DI1	DI_2	Gripper	0 DI_4	OI_5	ON OFF DO1 Gripper	DO_3	DO_4
0 DI_6	OI_7	© DI_8	0 DI_9	DI_10	OFF OFF DO_5 DO_6	OFF DO_7	DO_8
Analog Input				Click name to edit	Analog Output		Click name to edit
Al_1	0.000 Al_2				0.000 0.000 A0_1 A0_2	1	

Illustr. 6-2 E/A CAB 2.1

Die Schnittstelle der digitalen Ein- und Ausgänge kann den Zustand der digitalen Ein- und Ausgänge im Schaltschrank überwachen. Klicken Sie dazu auf das digitale Ein-/Ausgangssignal. Bearbeiten Sie den Namen des digitalen Ein-/Ausgangs, wählen Sie die Funktion im Dropdown-Menü aus und klicken Sie **OK**. Sobald das Signal des digitalen Eingangs ausgelöst wird, wird die Funktion aktiviert. Der digitale Ausgang zeigt den Zustand der ausgewählten Funktion in Echtzeit an.

Die Schnittstelle der analogen Ein- und Ausgänge kann analoge Semaphore überwachen. Klicken Sie dazu auf das digitale Ein-/Ausgangssignal. Bearbeiten Sie den Namen des analogen Ein-/Ausgangs, wählen Sie die Funktion im Dropdown-Menü aus und klicken Sie **OK**. Die Funktionen der analogen Ein- und Ausgänge sind: Spannungseingang, Spannungsausgang, Stromeingang und Stromausgang. Der analoge Spannungsbereich ist zwischen 0V und 10V, entsprechend dem Anzeigebereich von 0-100 (1V entspricht daher 10; Genauigkeit von 0,1V). Der Analoge Strombereich ist zwischen 0mA bis 20mA entsprechend dem Anzeigebereich von 0-100 (2mA entsprechen daher 10; der Wert kann nur ein Vielfaches von 2 sein).

6.2.2 MiniCab

Das MiniCab bietet 7 digitale Eingänge und Ausgänge. Sobald das MiniCab angeschlossen ist, werden in der E/A-Schnittstelle die tatsächlichen Signale am Schaltschrank angezeigt. Das MiniCab ist ein NPN-Typ, welcher durch 0V ausgelöst wird. Derselbe Kanal kann nicht gleichzeitig als Ein- und Ausgang eingestellt werden. Die Schnittstelle der digitalen Ein- und Ausgänge kann den Zustand der digitalen Ein- und Ausgänge im Schaltschrank überwachen. Klicken Sie dazu auf das digitale Ein-/Ausgangssignal. Bearbeiten Sie den Namen des digitalen Ein-/Ausgangs, wählen Sie die Funktion im Dropdown-Menü aus und klicken Sie **OK**. Sobald das Signal des digitalen Eingangs ausgelöst wird, wird die Funktion aktiviert. Der digitale Ausgang zeigt den Zustand der ausgewählten Funktion in Echtzeit an.

6

6.3 Werkzeug-Eingänge/Ausgänge

Es gibt zwei TIO (englisch für **Tool Input/Output**; deutsch für **Werkzeug Ein-/Ausgang**) Versionen. In diesem Abschnitt wird nur die Verwendung von TIO V3 beschrieben. Für Anweisungen und Informationen zu anderen Versionen, wenden Sie sich an das technische Personal von JAKA. Die TIO-Schnittstelle kann unter **Einstellungen (Settings) > Hardware & Kommunikation (Hardware & Communication) > Werkzeug-E/A (Tool I/O)** konfiguriert werden. Die TIO V3 unterstützt zwei digitale Eingänge, zwei digitale Ausgänge und zwei analoge Eingänge. Die zwei digitalen Ausgänge können in zwei Hochgeschwindigkeits-RS485-Multiplex-Kanäle umgewandelt werden. Die zwei analogen Eingänge können in zwei Niedergeschwindigkeits-RS485-Multiplex-Kanäle umgewandelt werden. Gleichzeitig unterstützt die TIO-Schnittstelle einen konfigurierbaren Ausgangsspannung (12V, 24V, OFF) zur Stromversorgung externer Geräte.

<				nulation S ₂ Settings Log	⑦ III ♣ f14f Help Signal JAKA_Doc 1898	•••
Control cabinet	Tool	Modbus	PROFINET	Ethernet/IP	Delete Add Edit Run	Address
Digital Input			Click name to edit	Digital Output	Click name to edit	
O DI_1	O DI_2			DO_1 DO_2		
Analog Input	0.000 Al_2		Click name to edit			

Illustr. 6-4 TIO

6.3.1 Einstellung digitale Eingänge

Die zwei digitalen Eingänge der TIO-Schnittstelle können auf verschiedene Eingangsmodi eingestellt werden, einschließlich NPN-Typ-Eingang oder PNP-Typ-Eingang. Standardmäßig sind die beiden digitalen Eingänge als NPN-Eingänge konfiguriert. Klicken Sie auf den digitalen Eingang, den Sie bearbeiten wollen und ändern Sie den Namen und den Modus in dem Dropdown-Menü. Klicken Sie anschließend auf **OK**.

6.3.2 Einstellung digitale Ausgänge

Die beiden digitalen Ausgänge können als RS485-Multiplex-Kanäle eingestellt werden. Verschiedene Ausgangsmodi, wie NPN-Ausgang, PNP-Ausgang oder Push-Pull-Ausgang, werden von den digitalen Ausgängen unterstützt. Standardmäßig sind die beiden digitalen Ausgänge als NPN-Eingänge konfiguriert. Klicken Sie auf den digitalen Ausgang, den Sie bearbeiten wollen und ändern Sie den Namen und den Modus in dem Dropdown-Menü. Klicken Sie anschließend auf **OK**.

ANMERKUNG

Wenn zwei digitale Ausgänge als RS485-Kanal verwendet werden, müssen beide digitalen Ausgänge auf den RS485-Kanal 1eingestellt werden. Sobald einer auf den RS485-Kanal 1 umgestellt wird, wird der andere auch auf denselben Kanal eingestellt. Sobald ein digitaler Ausgang auf andere Modi konfiguriert wird, wird der andere digitale Ausgang automatisch auf den NPN-Typ-Ausgang eingestellt.

6.3.3 Einstellung analoge Eingänge

Die TIO-Schnittstelle bietet zwei analoge Eingänge, welche als Multiplex-Kanäle konfiguriert werden können. Standardmäßig wird die TIO-Schnittstelle als analoger Eingang verwendet. Klicken Sie auf den analogen Eingang, den Sie bearbeiten wollen und ändern Sie den Namen und den Modus in dem Dropdown-Menü. Klicken Sie anschließend auf **OK**. Der analoge Spannungsbereich ist zwischen 0V und 10V, entsprechend dem Anzeigebereich 0-4096 (0V entspricht 0 und 10V entspricht 4096; die Genauigkeit beträgt 0,1V).

ANMERKUNG

Unabhängig davon, ob die TIO-Schnittstelle an ein externes Gerät angeschlossen ist, ist der Wert des analogen Eingangs nicht 0. Der Wert variiert je nach TIO-Modell zwischen 400 bis 500 oder 700 bis 800.

6.4 Modbus Eingänge/Ausgänge

Der Schaltschrank unterstützt das Modbus-Kommunikationsprotokoll und kann als Modbus-Slave dienen. Die Eingangs- und Ausgangssignale in der Modbus-Schnittstelle sind Eingangs- und Ausgangsdaten, auf welche der Roboter und angeschlossene externe Geräte über Modbus-Kommunikation zugreifen können. Der Schaltschrank unterstützt als Modbus-Gerät 128 digitale Eingänge, 128 digitale Ausgänge, einschließlich 16 Modbus-Integer-Analogeingänge und 16 Modbus-Integer-Analogausgänge, 16 Modbus-Analogeingänge mit Vorzeichen, 16 Modbus-Analogausgänge mit Vorzeichen, 32 Modbus-Float-Analogeingänge und 32 Modbus-Float-Analogausgänge (siehe Anhang Modbus-Adresstabelle).

<					Simulation Settin	hgs Log	? III Help Signal	JAKA_Doc f14f	
Control cabinet	Tool		Modbus	PROFINET	Ethernet/IP			Delete Add Edit Rur	Addres
Digital Input				Click name to edit	Digital Output			Click name to (edit
O DI_1	0 DI_2) DI_3	0 DI_4	© DI_5	OFF DO_1	DO_2	DO_3	DO_4	I
OI_6	OL7	OI_8	0 DI_9	OL_10	OFF DO_5	OFF DO_6	OFF DO_7	OFF DO_8	
Analog Input				Click name to edit	Analog Output			Click name to	edit
Modbus integer	Modbus sig	ned Modb	us float		Modbus integer M	lodbus signed	Modbus float	1	
0 AI_1	0 AI_2	A	0 I_3	0 Al_4	0 A0_1	0 A0_2	0 A0_3	0 A0_4	
0 AI_5	0 AI_6	A	0	0 AI_8	0 A0 5	0 A0 6	0 A0 7	0 8 0A	

Illustr. 6-5 Modbus Eingänge/Ausgänge

6.4.1 Einstellung digitale Eingänge/Ausgänge

Die Schnittstelle der digitalen Ein- und Ausgänge kann den Zustand des digitalen Ein- und Ausgangs im Modbus überwachen. Klicken Sie auf den digitalen Eingang/Ausgang, den Sie bearbeiten wollen und ändern Sie den Namen und den Modus in dem Dropdown-Menü. Sobald das Signal des digitalen Eingangs ausgelöst wird, wird die Funktion aktiviert. Der digitale Ausgang zeigt den Zustand der ausgewählten Funktion in Echtzeit an.

6.4.2 Einstellung analoge Eingänge/Ausgänge

Die Schnittstelle der analogen Ein- und Ausgänge kann analoge Semaphore im Modbus überwachen. Klicken Sie auf den analogen Eingang/Ausgang, den Sie bearbeiten wollen und ändern Sie den Namen und die Ausgangswerte (nur für analoge Ausgänge) und klicken Sie auf **OK**. Modbuswerte sind einfache Gleitkommazahlen. Es werden nur sieben Stellen angezeigt. Bei Überschreitung der Anzahl wird aufgerundet.

6.5 **PROFINET Eingänge/Ausgänge**

Der Schaltschrank unterstützt das PROFINET-Kommunikationsprotokoll und kann als PROFINET-Slave dienen. Die Eingangs- und Ausgangssignale in der PROFINET-Schnittstelle sind Eingangs- und Ausgangsdaten, auf welche der Roboter und angeschlossene externe Geräte über PROFINET-Kommunikation zugreifen können. Der Schaltschrank unterstützt als PROFINET-Gerät 64 digitale Eingänge, 64 digitale Ausgänge, einschließlich 32 PROFINET-Analogeingänge mit Vorzeichen, 32 PROFINET-Analogausgänge mit Vorzeichen, 32 PROFINET-Float-Analogeingänge und 32 PROFINET-Float-Analogausgänge (siehe Anhang PROFINET-Adresstabelle).

Illustr. 6-6 PROFINET Eingänge/Ausgänge

Die Einstellungsschritte der analogen/digitalen PROFINET-Ein-/Ausgänge sind identisch zu den jeweiligen Einstellungsschritten des Modbus-Kommunikationsprotokolls (siehe Kapitel 6.4.1 und 6.4.2).

6.6 Ethernet/IP Eingänge/Ausgänge

Der Schaltschrank unterstützt das Ethernet/IP-Kommunikationsprotokoll und kann als Ethernet/IP-"Kommunikationsadapter" dienen. Die Eingangs- und Ausgangssignale in der Ethernet/IP-Schnittstelle sind Eingangs- und Ausgangsdaten, auf welche der Roboter und angeschlossene externe Geräte über Ethernet/IP-Kommunikation zugreifen können. Der Schaltschrank unterstützt als Ethernet/IP-Gerät 64 digitale Eingänge, 64 digitale Ausgänge, einschließlich 24 Ethernet/IP-Analogeingänge mit Vorzeichen, 24 Ethernet/IP -Analogausgänge mit Vorzeichen, 32 Ethernet/IP -Float-Analogeingänge und 32 Ethernet/IP -Float-Analogausgänge (siehe Anhang Ethernet/IP -Adresstabelle).

<					Simulation Settings Log	? II	JAKA_Doc_ f14f	
ontrol cabinet	Tool		Modbus	PROFINET	Ethernet/IP	D	🗓 🕀 🗹 🕞 Helete Add Edit Run	Addres
Digital Input				Click name to edit	Digital Output		Click name to e	edit
OI_1	0 DI_2	0 DI_3	O DI_4	OI_5	DO_1 DO_2	DO_3	OFF DO_4	
OI_6	OI_7	OI_8	© DI_9	0 DI_10	DO_5 DO_6	OFF DO_7	OFF DO_8	
Analog Input				Click name to edit	Analog Output		Click name to e	edit
Ethernet/IP signed	Ethernet/IP f	loat			Ethernet/IP signed Ethernet/IP float			1
AI_1	0 AI_2	A	0	0 Al_4	0 0 A0_1 A0_2	0	A0_4	l
0 Al_5	0 Al_6		0	0 AI_8	0 0 A0 5 A0 6	0 A0 7	0 A0 8	

Illustr. 6-7 Ethernet/IP Eingänge/Ausgänge

Die Einstellungsschritte der analogen/digitalen Ethernet/IP-Ein-/Ausgänge sind identisch zu den jeweiligen Einstellungsschritten des Modbus-Kommunikationsprotokolls (siehe Kapitel 6.4.1 und 6.4.2).

6.7 Skalierbare Eingänge/Ausgänge

Die E/A-Schnittstelle unterstützt skalierbare Ein- und Ausgänge. Dabei fungiert der Roboter als Master oder Client. Skalierbare Ein- und Ausgänge können als Modbus TCP/IP und Modbus RTU konfiguriert werden. Die Verbindungskabel müssen verbunden sein, bevor Sie die skalierbaren Ein- und Ausgänge konfigurieren. Wenn die Kommunikationsmethode Modbus TCP/IP ist, müssen Sie den Netzwerkanschluss an der Vorder- oder Unterseite des Schaltschranks anschließen. Falls die Kommunikationsmethode Modbus RTU ist, nutzen sie die 485-Schnittstellen an der Vorderseite des Schaltschranks. Die Einstellungsschritte der analogen/digitalen skalierbaren Ein-/Ausgänge sind fast identisch zu den jeweiligen Einstellungsschritten des Modbus-Kommunikationsprotokolls (siehe Kapitel 6.4.1 und 6.4.2). Der einzige Unterschied besteht darin, dass die Schaltfläche **Run (Ausführen)** angeklickt werden muss, bevor skalierbare analoge Ausgänge konfiguriert werden. Die Schaltflächen der Schnittstelle sind wie folgt:

- kalierbare Module konfigurieren
- 🕀 skalierbare Module hinzufügen
- 🔟 skalierbare Module löschen
- Skalierbare Module ausführen

Die maximale Anzahl der skalierbaren Ein- und Ausgänge sind 32 analoge Eingänge, 32 analoge Ausgänge, 64 digitale Eingänge und 64 digitale Ausgänge. Es werden bis zu acht skalierbare Module unterstützt.

6.7.1 Modbus TCP/IP

Die Konfiguration ist wie folgt:

- Name: benutzerdefinierter Modbus TCP/IP-Name, der nicht mit anderen E/A-Modulen identisch sein darf.
- IP-Adresse (IP-address): IP-Adresse des Modbus TCP/IP-Servers.
- Geräte ID (Device ID): Gerätenummer des Modbus TCP/IP-Servers.
- Port Nummer (Port number): Modbus TCP/IP-Server-Port-Nummer

Konfigurieren Sie dann die **Registeradresse (Register address)** und **Anzahl (Quantity)** der digitalen und analogen Ein- und Ausgänge des Modbus TCP/IP. Klicken Sie **OK** und das Modbus-Modul wird in der E/A-Schnittstelle angezeigt.

<		Simulation Settings Log Help	III Provident filler fi
Control Cabinet	I/O Settings		Detete Add Edit Run Address
Digital Input	Modbus TCP/IP	O Modbus RTU	Click name to edit
O 🚱 Di1 Di_2	Name:	Device ID:	DO_4
O 0 DI.6 DI 7	IP address:	Port:	OFF
	Digital input: Register address	Quantity Quantity	DO_8
Al_1	Analog input: Register address	Quantity	Click name to edit
	Cancel	ОК	
	~	\	

Illustr. 6-8 Skalierbare Eingänge/Ausgänge Modbus TCP/IP

6.7.2 Modbus RTU

Die Konfiguration ist wie folgt:

- **Name**: benutzerdefinierter Modbus RTU-Name, der nicht mit anderen E/A-Modulen identisch sein darf.
- Baudrate (Baud rate): die Baudrate des konfigurierten Modbus RTU.
- Stoppbitlänge (Stop bit length): die Stoppbitlänge des konfigurierten Modbus RTU.
- Knotennummer der Slave-Station (Slave station node number): Knotennummer der Slave-Station des konfigurierten Modbus RTU.
- Datenbitlänge (Data bit lenght): die Datenbitlänge des konfigurierten Modbus RTU.
- Paritätsprüfung (Paritycheck): die Paritätsprüfungsmethode des konfigurierten Modbus RTU.

Konfigurieren Sie dann die **Registeradresse (Register adress)** und **Anzahl (Quantity)** der digitalen und analogen Ein- und Ausgänge des Modbus TCP/IP. Klicken Sie **OK** und das Modbus-Modul wird in der E/A-Schnittstelle angezeigt.

<		Simulation Settings Log Help	Signal JAKA_Doc
Control Cabinet	I/O Settings		Image: Constraint of the second sec
Digital Input	O Modbus TCP/IP	Modbus RTU	Click name to edit
DI1 DI_	Name: Baud rate: 4800	Slave node number:	DO_4
DI_6 DI_	Stop bit length: 1	Parity check: Even parity	DO_8
Analog Input	Digital output: Register address Analog input: Register address	Quantity	Click name to edit
0.000 Al_1	Analog output: Register address	Quantity	
	Cancel	ОК	

Illustr. 6-9 Skalierbare Eingänge/Ausgänge Modbus RTU

ANMERKUNG

Wenn mehrere Modbus RTU-E/A-Module konfiguriert werden, müssen Busparameter wie Baudrate, Stoppbitlänge, Datenbitlänge und Paritätsprüfungsmodus jedes Modbus RTU-Moduls übereinstimmen.

7 Manuelle Bedienung

Klicken Sie auf der Startseite der JAKA-App auf **Manuelle Bedienung (Manual Operation)**, um die manuelle Bedienoberfläche aufzurufen. Klicken Sie in anderen Schnittstellen auf den Pfeil nach oben am unteren Rand des Bildschirms, um die Funktionsleiste anzuzeigen und klicken Sie auf **Manuelle Bedienung (Manual Operation)**, um die manuelle Bedienoberfläche aufzurufen.

Illustr. 7-1 Manuelle Bedienung

7.1 Bewegungssteuerung

Die JAKA-App unterstützt zwei verschieden Koordinatensysteme, welche für die Bewegungsrichtung des Roboters genutzt werden können: das Werkzeugkoordinatensystem und das Benutzerkoordinatensystem. Das Werkzeugkoordinatensystem kann in **Settings (Einstellungen) > Operation Settings** (Betriebseinstellungen) > TCP-Settings (Einstellungen Werkzeug-Mittelpunkt) angepasst werden (siehe Kapitel 5.2.1). Das Benutzerkoordinatensystem kann in **Settings (Einstellungen) > Operation** Settings (Betriebseinstellungen) > TCP-Settings (Einstellungen Werkzeug-Mittelpunkt) angepasst werden (siehe Kapitel 5.2.2).

7.1.1 Schaltfläche Koordinatensystem

Klicken Sie in der manuellen Bedienoberfläche auf ^(S) (Switch Coordinate System/Koordinatensystem wechseln). Sobald die Symbolfarbe des Benutzerkoordinatensystems (World) rot wird, bedeutet das, dass das Benutzerkoordinatensystem verwendet wird. Sobald die Symbolfarbe des Endflansches (End Flange Center) rot wird, bedeutet das, dass das Werkzeugkoordinatensystem verwendet wird.

🍒 ANME

ANMERKUNG

Das Benutzerkoordinatensystem ist standardmäßig das Weltkoordinatensystem. Das Werkzeugkoordinatensystem ist standardmäßig das Endflanschkoordinatensystem.

7.1.1.1 Schaltfläche Benutzerkoordinatensystem

Klicken Sie auf das kleine Dreieck in der unteren Ecke des Welt-Symbols (Benutzerkoordinatensystem). Eine Liste der Benutzerkoordinatensysteme wird aufgeklappt. Klicken Sie auf den Namen eines beliebigen Benutzerkoordinatensystems, um zu diesem zu wechseln.

Illustr. 7-2 Manuelle Bedienung Benutzerkoordinatensystem

7.1.1.2 Schaltfläche Werkzeugkoordinatensystem

Klicken Sie auf das kleine Dreieck in der unteren Ecke des Endflansches (Werkzeugkoordinatensystem). Eine Liste der Werkzeugkoordinatensysteme wird aufgeklappt. Klicken Sie auf den Namen eines beliebigen Werkzeugkoordinatensystems, um zu diesem zu wechseln.

7.1.2 Robotersteuerung

Auf beiden Seiten der manuellen Bedienungsschnittstelle gibt es Optionen, um die Schritte des jeweiligen virtuellen Joysticks darunter zu steuern. Durch die Änderung des Schritttyps und Schrittwerts wird der Bewegungsabstand und der Bewegungswinkel jeder manuellen Roboterbewegung gesteuert. Je kleiner der Schrittwert, desto präziser ist die Roboterbewegung.

Illustr. 7-3 Manuelle Bedienung Bedienungsschritte

7.1.3 Einstellung der Bewegungsgeschwindigkeit

Sie können die Bewegungsgeschwindigkeit des Roboters einstellen, indem Sie den Schieberegler in die gewünschte Position ziehen. Alternativ können Sie auch auf den Prozentsatz über den Schieberegler klicken, um die Bewegungsgeschwindigkeit einzustellen.

<) Switch C World End Flang, Simulation Settings Log Help	Signal JAKA_Doc f14f
Step: Continuous T mm/ °	Robot model Zu 7	Step: Continuous
Ź		Joint 6 0.000 ° < O >
Z		Joint 5 0.000 °
$\langle \times \bigcirc \times $		Joint 4 0.000 ° < O >
IRZ O RZ	Z X	Joint 3 52.028 ° < O >
Translation x Y 379.967 mm 8.010 mm	Z Rotation RX RY RZ 657.821 mm -90.000 -88.132 180.000	Joint 2 39.840 ° < O >
RX RX RY Moving speed	50.000%	Joint 1 0.000 ° < O >
	\sim	

Illustr. 7-4 Manuelle Bedienung Bewegungsgeschwindigkeit

7.1.4 Räumliche Bewegung

Die räumliche Bewegung bezieht sich auf die Bewegung des Ursprungs des Werkzeugkoordinatensystems des Roboters im kartesischen Raum. Sie können einstellen, ob die Bewegungen im Benutzerkoordinatensystem oder im Werkzeugkoordinatensystem erfolgen sollen. Die räumliche Bewegung ist die dazugehörige Bewegung der einzelnen Roboterachsen. Schieben Sie den virtuellen Joystick auf der linken Seite der Benutzeroberfläche und halten Sie ihn gedrückt. Der Ursprung des Werkzeugkoordinatensystems des Roboters verläuft im entsprechenden Raum des aktuellen Benutzerkoordinatensystems. Wenn der virtuelle Joystick losgelassen wird, kehrt er automatisch in die Ausgangsposition zurück und der Roboter wird sofort abgebremst und angehalten.

Illustr. 7-5 Manuelle Bedienung räumliche Bewegung

7.1.5 MoveJ

Der Roboter besteht aus sechs Achsen. Die voneinander unabhängige Bewegung der Achsen durch manuelle Bedienung ist die MoveJ-Bewegung (Move Joint). Um einzelne Achsen manuell zu steuern, gehen Sie wie folgt vor:

- Schieben Sie den Joystick der entsprechenden Achse in die gewünschte Richtung.
- Sobald Sie den virtuellen Joystick nicht mehr betätigen, kehrt er in die Ausgangsposition zurück und der Roboter wird sofort abgebremst und angehalten.

Illustr. 7-6 Manuelle Bedienung MoveJ

7.1.6 Positionsbewegung

Der Roboter kann durch manuelle Bedienung so bewegt werden, dass er sich in eine bestimmte Position bewegt. Sie können die Achsenposition des Roboters angeben und auch die räumliche Position des Ursprungs des aktuellen Werkzeugkoordinatensystems im aktuellen Benutzerkoordinatensystem festlegen. Um diese Bewegung auszuführen, gehen Sie wie folgt vor:

- Klicken Sie auf eine beliebige Achse oder ein räumliches Positionsinformationsfeld in der Schnittstelle für manuelle Bedienung, um die Schnittstelle für Positionsbewegung aufzurufen.
- Falls sich der Roboter zu einer bestimmten Achsenposition bewegen soll, geben Sie die Endposition der sechs Achsen ein, drücken und halten Sie Move to the Point by MoveJ (Bewegen zum MoveJ-Positionspunkt). Sobald sich der Roboter zu der angegebenen Position bewegt hat, klicken Sie OK.
- Falls sich der Roboter zu einer bestimmten Position im Raum bewegen soll, geben Sie die endgültige Position im Raum ein, berechnen Sie die Achsenpositionen, drücken und halten Sie Move to the Point by MoveJ/MoveL (Bewegen zum MoveJ/MoveL-Positionspunkt). Sobald sich der Roboter zu der angegebenen Position bewegt hat, klicken Sie OK.

Illustr. 7-7 Manuelle Bedienung Position im Raum

Illustr. 7-8 Manuelle Bedienung MoveL

8 Programmierung

Die JAKA-App bietet eine vereinfachte Programmieroberfläche. Sie können den Roboter mit wenigen Programmierkenntnissen steuern. Die Methode ist eine visuelle Programmierung, welche die Arbeitseffizienz steigert. Die Programmieroberfläche ist in drei Bereiche unterteilt:

- Bereich A: Programmierbefehle
- Bereich B: Programmierbereich
- Bereich C: Programm-Symbolleiste

Illustr. 8-1 Programmieroberfläche
8.1 Programmierbefehle

Klicken Sie auf ⁽²⁾ in der Programmieroberfläche, um zu den verschiedenen Programmierbefehlen Hilfestellung zu bekommen.

Illustr. 8-2 Programmierbefehle

8.2 Programmierbereich

Im Programmierbereich erscheinen die einzelnen Befehle bzw. das geschriebene Programm.

8.3 Programm-Symbolleiste

8.3.1 Programmüberwachung

		Klicken Sie auf 🕑 und der Roboter führt das
(\mathbf{b})	Run program (Programm	geladene Programm aus. Sobald das Programm läuft,
U	ausführen)	wird das Symbol durch Pause (Programm pausieren)
		oder Stopp (Programm anhalten) ersetzt.
		Klicken Sie auf . Es erscheint ein
(IN)	Robot speed percentage	Geschwindigkeitsschieberegler. Stellen Sie durch
	(Robotergeschwindigkeit	Bewegen des Schiebereglers die Geschwindigkeit des
	Prozentsatz)	Roboters in Prozent ein. Klicken Sie alternativ auf die
		Zahl unter dem Schieberegler, um den Prozentsatz

		direkt einzugeben.		
		Sobald das Programm ausgeführt wird, erscheint		
\rightarrow		dieses Symbol links neben dem laufenden Befehl.		
	Command indicator	Dieses dient dazu den laufenden Befehl im Programm		
•	(Befehlsanzeige)	einfach lokalisieren zu können. Wenn das Programm		
		angehalten wird, bleibt der Befehlsindikator links neben		
		dem zuletzt ausgeführten Befehl.		
		Wenn ein fehlerhafter Befehl im Programm auftaucht,		
		zeigt die App "Parsing failure, syntax error" an.		
	Go to invalid command (Zum	Klicken Sie auf Go to invalid command (Zum		
-	ungütigen Befehl wechseln)	ungültigen Befehl wechseln) und anschließend auf		
		OK. Das Symbol wird vor dem ungültigen Befehl		
		angezeigt.		
		Wenn das Programm auf einen internen Formatfehler		
		stößt, erscheint in der App eine Warnmeldung. Wenn		
		Sie auf OK klicken, schließt die App dieses fehlerhafte		
		Programm und öffnet ein neues Programm. Das		
1	Program array datastian	fehlerhafte Programm wird nicht überspeichert,		
/		sondern als neues Programm mit dem Namen des		
	(Erkennung von Programmfeniern)	Originalprogramms name_ex + Zeit + 6-stellige		
		Sequenznummer gespeichert. Diese Funktion kann		
		dazu führen, dass das Programm in der alten Version		
		nicht die neue Version öffnen kann. In dem Fall		
		wenden Sie sich an einen JAKA-Techniker.		

Tbl. 8-1 Programmüberwachung

8.3.2 Programmbetrieb

\oplus	Create new program (Neues Programm erstellen)	Klicken Sie darauf, um ein neues Programm zu erstellen. Am oberen Rand der Oberfläche, können Sie den Programmnamen ändern.
	Save (Speichern)	Klicken Sie darauf, um das Programm zu speichern.
Ð)	Save as (Speichern als)	Klicken Sie darauf, geben Sie den Namen des Programms, welches Sie speichern wollen und klicken Sie auf OK .
ß	Open program (Programm öffnen)	Klicken Sie darauf und alle gespeicherten Programme werden in der Liste angezeigt. Diese können nach Dateinamen, Erstellungsdatum und Dateigröße sortiert werden.

	Import program (Programm	Klicken Sie darauf, wählen Sie den Pfad, in dem die	
\leftarrow		Programmdatei gespeichert ist, suchen Sie die Zip-	
	importieren)	Datei des Programms aus und klicken Sie auf OK .	
		Klicken Sie darauf, wählen Sie das Programm, welches	
_		Sie exportieren wollen und klicken Sie auf OK . Wählen	
\rightarrow	export program (Programm	Sie anschließend den Speicherort der Programmdatei	
		und klicken Sie auf OK . Sie können bis zu 5	
		Programme auf einmal exportieren.	
		Klicken Sie darauf, wählen Sie das Programm, dass	
	Delete program (Programm	Sie löschen wollen und klicken Sie auf OK. Sie können	
	loschen)	bis zu 5 Programme auf einmal löschen.	
		Klicken Sie darauf, wählen Sie das Programm, welches	
		Sie teilen wollen und klicken Sie auf OK . Wählen Sie	
S	Shave an array (Dreaman failer)	anschließend den Roboter, mit dem Sie das Programm	
0	Share program (Programm tellen)	teilen wollen und klicken Sie auf OK . Sie können mit	
		dieser Funktion Programme nur mit anderen Robotern	
		im gleichen Netzwerk teilen.	
	Backup file switch (Schieberegler	Klicken Sie auf den Schieberegler, um	
	Sicherungsdateien)	Sicherungsdateien ein- oder auszublenden.	
	Sort (Sortieren)	Dateien können nach Dateinamen, Erstellungsdatum	
*		oder Dateigröße sortiert werden.	
	Advanced program operation (Erweiterte Programmfunktionen)	Klicken Sie darauf und auf der Programmieroberfläche	
		werden folgende Zusatzfunktionen angezeigt: alles	
		auswählen, kopieren, löschen und abbrechen.	
ž	Soloot all (Allos auswählon)	Wählen Sie alle Befehle im aktuellen	
		Programmierbereich aus.	
		Kopieren Sie den ausgewählten Befehl und fügen Sie	
		ihn in den aktuellen Programmierbereich ein.	
		Um eine programmübergreifende Kopie zu erstellen,	
		öffnen Sie nach der Überprüfung der Befehle, die Sie	
		kopieren wollen, das gewünschte Programm.	
		Daraufhin erscheint folgendes Aufforderungsfenster:	
		Prompt Message	
	Copy (Kopieren)	You have selected some commands. Add	
		them into set?	
		No Yes	
		Klicken Sie auf Yes . Wechseln Sie danach in das	
		gewünschte Zielprogramm und klicken Sie auf Copy	
		(Kopieren).	

8 PROGRAMMIERUNG

	Delete (Löschen)	Ausgewählten Befehl löschen.
×	Cancel (Abbrechen)	Erweiterte Programmfunktionen ausblenden.
\times	Exit (Verlassen)	Sub-Programm verlassen.
Þ	Single-step debugging (Debugging im Einzelschrittverfahren)	Mit dieser Funktion wird jeder Befehl im Programm einzeln ausgeführt. Klicken Sie auf die Schaltfläche und der Roboter beginnt da Programm auszuführen. Links neben den einzelnen Befehlen wird ein Indikator angezeigt, der angibt, welcher Befehl gerade ausgeführt wird. Sobald Sie auf Next (Weiter) klicken, führt der Roboter den nächsten Befehl aus und wartet erneut auf Sie, um beim nächsten Befehl erneut auf Next (Weiter) zu klicken. Um den Modus des Debuggings zu verlassen und das Programm anzuhalten, klicken Sie auf Stop Debugging
হি	Program lock (Programmsperre)	Nachdem Sie die Programmsperre aktiviert haben, kann das Programm nicht mehr geändert werden. Wenn Sie es ändern wollen, deaktivieren Sie die Programmsperre erneut
	Variable observation (Beobachtung der Variablen)	Sie können die Variablenwerte, die im laufenden Programm verwendet werden, in Echtzeit in der App beobachten (einschließlich Systemvariablen, Programmvariablen, Geschwindigkeitsvariablen und Positionsvariablen). Sie können die Variablen, welche Sie beobachten wollen, anpassen. Klicken Sie auf die Variable in Variable to be observed (Variable zu Beobachtung), um diese zur Beobachtung hinzuzufügen.
5	Undo (Rückgängig)	Brechen Sie den aktuellen Vorgang ab und kehren Sie zum letzten Schritt zurück.
\bigcirc	Redo (Wiederherstellen)	Brechen Sie die Rückgängigmachung ab.

Tbl. 8-2 Programmbetrieb

8.3.3 Anpassung der Schnittstelle

(+)	Zoom in (Vergrößern)	Vergrößern der Anzeige des Programmierbereichs.
Q	Zoom out (Verkleinern)	Verkleinern der Anzeige des Programmierbereichs.
	Restore (Wiederherstellen)	Programmierbereich auf Standardgröße wiederherstellen.

Tbl. 8-3 Anpassung Schnittstelle

Abbildungsverzeichnis

Illustr. 3-1 Installation App Android 1/3	8
Illustr. 3-2 Installation App Android 2/3	9
Illustr. 3-3 Installation App Android 3/3	9
Illustr. 3-4 Installation App Windows 1/7	10
Illustr. 3-5 Installation App Windows 2/7	10
Illustr. 3-6 Installation App Windows 3/7	10
Illustr. 3-7 Installation App Windows 4/7	11
Illustr. 3-8 Installation App Windows 5/7	11
Illustr. 3-9 Installation App Windows 6/7	12
Illustr. 3-10 Installation App Windows 7/7	12
Illustr. 4-1 Interface	14
Illustr. 4-2 Hilfe	15
Illustr. 4-3 Roboterverbindung	17
Illustr. 4-4 Roboter-Login	18
Illustr. 4-5 Roboter-Login	19
Illustr. 4-6 Roboter-Upgrade 1/4	20
Illustr. 4-7 Roboter-Upgrade 2/4	20
Illustr. 4-7 Roboter-Upgrade 3/4	21
Illustr. 4-7 Roboter-Upgrade 4/4	21
Illustr. 4-10 Verbindungsinformationen	22
Illustr. 4-11 Schaltschrank ausschalten	22
Illustr. 4-12 Roboter einschalten	23
Illustr. 4-12 Roboter aktivieren	24
Illustr. 4-14 Log	25
Illustr. 4-15 Log Filter	26
Illustr. 4-16 Log Detail	26
Illustr. 4-17 Dropdown	28
Illustr. 4-18 Sicherheitsprüfsumme	28
Illustr. 4-19 Überwachung Roboterzustand	29
Illustr. 4-20 Überwachung Roboterzustand Prozentwert	30
Illustr. 4-21 Versionsinformation	30
Illustr. 4-22 Versionsinformation Einstellungen	31
Illustr. 4-23 Kundenservice	32
Illustr. 4-24 Update	33
Illustr. 5-1 Grundeinstellungen	34
Illustr. 5-2 Add-on	36
Illustr. 5-3 Versionsupgrade	37
Illustr. 5-4 System Backup	39
Illustr. 5-5 Programmliste Backup	39
Illustr. 5-6 Benutzer-Management	40
Illustr. 5-7 Rechte-Hand-Regel	41
Illustr. 5-8 TCP-Koordinatensystem	41
Illustr. 5-9 Flanschkoordinatensystem	42
Illustr. 5-10 TCP manuelle Einstellung	43

Illustr. 5-10 TCP 4-Punkte-Einstellung	44
Illustr. 5-12 TCP 6-Punkte-Einstellung	45
Illustr. 5-13 Benutzer-Koordinatensystem Einstellungen	46
Illustr. 5-14 Benutzer-Koordinatensystem Achsen	46
Illustr. 5-15 Eingabeeinstellungen	47
Illustr. 5-16 3-Punkte-Einstellungen	48
Illustr. 5-17 Nutzlast-Einstellungen	49
Illustr. 5-18 Montage	52
Illustr. 5-19 Fehlerdiagnose	53
Illustr. 5-20 Fehlerdiagnose	54
Illustr. 5-21 Roboterausrichtung	55
Illustr. 5-22 Einstellungen Bewegungsbegrenzung	56
Illustr. 5-23 Einstellungen Kollision	57
Illustr. 5-24 Reduzierter Modus	58
Illustr. 5-25 Freedrive-Modus	59
Illustr. 5-26 Sicherheitszone	59
Illustr. 5-27 Sicherheitszone Einstellungen	61
Illustr. 5-28 Werkzeugausrichtung	61
Illustr. 5-29 Werkzeugausrichtung Schema	62
Illustr. 5-30 Dedizierte E/A-Schnittstellen CAB 2.1	64
Illustr. 5-31 Dedizierte E/A-Schnittstellen MiniCab	65
Illustr. 5-33 Redundanz Sicherheitssignale	70
Illustr. 5-33 Standardprogramm	72
Illustr. 5-34 Trajektorien	73
Illustr. 5-35 Systemvariablen	75
Illustr. 5-36 Prozentuelle Verlangsamung	76
Illustr. 5-37 Prozentuelle Verlangsamung Anzeige Programmieroberfläche	76
Illustr. 5-38 Modbus Einstellungen	77
Illustr. 5-39 Kraftsensor	78
Illustr. 5-40 PROFINET Einstellungen	79
Illustr. 5-41 Ethernet/IP Einstellungen	80
Illustr. 5-42 Hardware-Einstellungen	81
Illustr. 5-43 Konfiguration Ausgangsspannung TIO	82
Illustr. 5-44 RS485 Kanal	83
Illustr. 5-45 Konfigurierung RS485	83
Illustr. 5-46 Konfigurierung RS485 Kommunikationsparameter	84
Illustr. 5-47 Semaphore	85
Illustr. 5-48 Debugging Sofortbefehl	87
Illustr. 5-49 Bremsspannung	88
Illustr. 6-1 E/A-Interface	89
Illustr. 6-2 E/A CAB 2.1	93
Illustr. 6-3 E/A MiniCab	94
Illustr. 6-4 TIO	95
Illustr. 6-5 Modbus Eingänge/Ausgänge	97
Illustr. 6-6 PROFINET Eingänge/Ausgänge	98
Illustr. 6-7 Ethernet/IP Eingänge/Ausgänge	99
Illustr. 6-8 Skalierbare Eingänge/Ausgänge Modbus TCP/IP	100

Illustr. 6-9 Skalierbare Eingänge/Ausgänge Modbus RTU	101
Illustr. 7-1 Manuelle Bedienung	102
Illustr. 7-2 Manuelle Bedienung Benutzerkoordinatensystem	103
Illustr. 7-3 Manuelle Bedienung Bedienungsschritte	104
Illustr. 7-4 Manuelle Bedienung Bewegungsgeschwindigkeit	104
Illustr. 7-5 Manuelle Bedienung räumliche Bewegung	105
Illustr. 7-6 Manuelle Bedienung MoveJ	106
Illustr. 7-7 Manuelle Bedienung Position im Raum	107
Illustr. 7-8 Manuelle Bedienung MoveL	107
Illustr. 8-1 Programmieroberfläche	108
Illustr. 8-2 Programmierbefehle	109

Tabellenverzeichnis

Tbl. 2-1 Schnellstart	6
Tbl. 3-1 Systemanforderungen	7
Tbl. 5-1 Fehlerdiagnose	53
Tbl. 5-2 Roboterausrichtung	55
Tbl. 5-3 Sicherheitsstatus Signale	70
Tbl. 5-4 Bremsspannung	88
Tbl. 6-1 Funktionen digitale Eingänge	91
Tbl. 6-2 Funktionen digitale Ausgänge	93
Tbl. 8-1 Programmüberwachung	110
Tbl. 8-2 Programmbetrieb	112
Tbl. 8-3 Anpassung Schnittstelle	113

Anhang A Benutzermanagement

	Administrator	Techniker	Bediener
Homepage			
	Klicken, um		
JAKA Logo	Wartungsmodus zu	Kein Zugriff	Kein Zugriff
	aktivieren.		
Schaltfläche Roboter/Simulation	Wählbar	Wählbar	Nur Roboter.
Aus-Schaltfläche	Bedienbar	Bedienbar	Bedienbar
Einstellungen	Bedienbar	Bedienbar	Bedienbar
	Auswählbar und	Auswählbar und	Auswählbar und
Log	sichtbar	sichtbar	sichtbar
1.016	Auswählbar und	Auswählbar und	Auswählbar und
Hilfe	sichtbar	sichtbar	sichtbar
WLAN	Abrufbar	Abrufbar	Abrufbar
Sicherheitsprüfsumme	Abrufbar	Abrufbar	Abrufbar
Verbinden/Trennen	Bedienbar	Bedienbar	Bedienbar
Roboter	Dedienhen	Dedianhar	Dedianhar
ein-/ausschalten	Bedienbar	Bedienbar	Bedienbar
Roboter aktivieren/deaktivieren	Bedienbar	Bedienbar	Bedienbar
Vergrößern, verkleinern und	Padianhar	Padianhar	Dedienher
verlassen	Bedienbai	bedieribai	Bedienbar
Programmierschnittstelle	Zugänglich	Zugänglich	Zugänglich
Schnittstelle manuelle	Zugönglich	Zugönglich	Zugönglich
Bedienung	Zuganglich	Zugangiich	Zugangiich
Ein-/Ausgänge	Zugänglich	Zugänglich	Zugänglich
Überwachung	Zugänglich	Zugänglich	Zugänglich
Informationen	Zugänglich	Zugänglich	Zugänglich
Einstellungen			
Systemeinstellungen			
Grundeinstellungen -	Veränderbar	Veränderbar	Abrufbar
Robotername	Veranderbai	veranderbai	Abidibai
Grundeinstellungen -	Veränderbar	Abrufbar	Abrufbar
Zeiteinstellung	Veranderbai	Abiubai	Abidibai
Netzwerkeinstellungen -	Bedienbar	Bedienbar	Abrufbar
Netzwerk wechseln	Dealcribal	Dealembal	Abraibai
Netzwerkeinstellungen –	Finstellhar	Finstellhar	Abrufbar
statische IP	Linstendar	Enotonbal	, , , , , , , , , , , , , , , , , , , ,
Add-on	Veränderbar	Veränderbar	Abrufbar
Versionsupgrade	Durchführbar	Durchführbar	Abrufbar

System Backup	Durchführbar	Durchführbar	Abrufbar
Benutzermanagement	Verwaltbar	Veränderbar	Abrufbar
Betriebseinstellungen			
TCP-Einstellungen	Einstellbar	Einstellbar	Abrufbar
	Einstellbar und	Einstellbar und	A have filmer
Einstellungen der Nutziast	identifizierbar	identifizierbar	Abrufbar
Benutzerkoordinatensystem	Einstellbar	Einstellbar	Abrufbar
Montageeinstellungen	Einstellbar	Einstellbar	Abrufbar
Fehlerdiagnose	Veränderbar	Veränderbar	Abrufbar
Sicherheitseinstellungen			
Limitierung Achse	Veränderbar	Abrufbar	Abrufbar
Roboterausrichtung	Veränderbar	Abrufbar	Abrufbar
Limitierung Bewegung	Veränderbar	Abrufbar	Abrufbar
Sicherheitszone	Einstellbar	Abrufbar	Abrufbar
Werkzeugausrichtung	Veränderbar	Abrufbar	Abrufbar
Dedizierte Sicherheits-E/A	Veränderbar	Abrufbar	Abrufbar
Programmeinstellungen			
Standardprogramm	Einstellbar	Abrufbar	Abrufbar
Trajektorieaufzeichnung	Einstellbar	Einstellbar	Abrufbar
Systemvariable	Veränderbar	Veränderbar	Abrufbar
Einstellung verlangsamter) (o në n do nh o n	A have the are	A la mufla a m
Modus	veranderbar	redivida	Abruibar
Hardware- und			
Kommunikationseinstellungen			
Einstellungen Modbus-	Veränderbar	Veränderbar	Abrufbar
Parameter	Veranderbai	Veranderbai	Abitibai
Endsensor	Veränderbar	Veränderbar	Abrufbar
Einstellungen PROFINET	Veränderbar	Veränderbar	Abrufbar
Einstellungen Ethernet/IP	Veränderbar	Veränderbar	Abrufbar
Zusätzliche Hardware-	Veränderbar	Veränderhar	Abrufbar
Einstellungen	Veranderbai	Veranderbar	Abraibai
Werkzeug-E/A (TIO)	Veränderbar	Veränderbar	Abrufbar
Bremsspannung	Veränderbar	Veränderbar	Abrufbar
Programmierung			
Programmierbefehle	Durchführbar	Durchführbar	Abrufbar
Ausführen	Durchführbar	Durchführbar	Durchführbar
Geschwindigkeits-Schieberegler	Durchführbar	Durchführbar	Abrufbar
Schaltfläche zur	Veränderbar	Veränderbar	Abrufbar
Programmbearbeitung			
Manueller Betrieb			

Wechsel von Koordinatensystemen und Modi	Durchführbar	Durchführbar	Durchführbar	
Roordinatensystemen und modi				
JOG	Durchführbar	Durchführbar	Durchführbar	
E/A				
E/A	Durchführbar	Durchführbar	Abrufbar	
Überwachung				
Alle Informationen	Abrufbar	Abrufbar	Abrufbar	
Informationen				
			Durchführbar	
Alle Optionen und Handlungen	Durchführbar	Durchführbar	(Außer "Nach	
			Updates suchen.")	

Anhang B Datentypen von Roboterparametern

	Name	Datentyp	Länge	Definition
1	Position der Achse abrufen	Array	6	Die sechs Elemente des Arrays stellen die Winkelwerte von Achse 1 bis Achse 6 dar (Maßeinheit: °).
2	Position des TCP (Werkzeugmittelpunkts) abrufen	Array	6	Die sechs Elemente des Arrays stellen die räumliche Position des aktuellen TCP im aktuellen Benutzerkoordinatensystem dar. Von 0 bis 5 entsprechen sie der Reihe X, Y, Z (Maßeinheit: mm), RX, RY, RZ (Maßeinheit: °).
3	Flanschmittelpunkt abrufen	Array	6	Die sechs Elemente des Arrays stellen die räumliche Position des Flanschmittelpunkts im aktuellen Benutzerkoordinatensystem dar. Von 0 bis 5 entsprechen sie der Reihe X, Y, Z (Maßeinheit: mm), RX, RY, RZ (Maßeinheit: °).
4	Endkraft abrufen	Array	6	Zur Ermittlung des Netto-Drehmoments (Maßeinheit: Nm), welcher die Endnutzlast mit dem aktuellen Drehmomentsensor kompensiert hat.
5	Wegpunkt	Array	6	Zur Erfassung der Position der Achsen.
6	Flanschmittelpunkt abrufen Endkraft abrufen Wegpunkt Endnutzlast abrufen Positionsvariable Kollisionsempfindlichke	Array	4	Zum Abrufen der gespeicherten Nutzlastinformation des Roboterendes. Von 0 bis 3 entsprechen sie der Nutzlast (Maßeinheit: kg) und den Abständen (Maßeinheit: mm) der Nutzlastmasse vom Flanschmittelpunkt in X-, Y- und Z-Richtung.
7	Positionsvariable	Array	12	Zum Notieren der Positionen der sechs Achsen sowie der Positionen und Ausrichtungen im kartesischen Raum.
8	Kollisionsempfindlichkeit abrufen	Ziffer	/	Kollisionsempfindlichkeit des Roboters.
9	Systemzeit	Ziffer	/	Aktuelle Systemzeit abrufen.

SF	Gegenstand	CAB 2.1	MiniCab	Bewertungsergeb	Zugehöriges	Antwortz	Kategorie
				nis	Submodul	eit	(CAB 2.1)
		Das Drücken der	Das Drücken der				
		Not-Aus-Taste	Not-Aus-Taste führt				
		führt zu einem	zu einem Stopp der				
		Stopp der	Kategorie 1. Der				
		Kategorie 1. Der	Roboter bremst bis				
		Roboter bremst	zum Stillstand ab				
		bis zum Stillstand	und die				
	Not-Aus mit	ab und die	Stromversorgung				
<u>сг</u>		Stromversorgung	des Roboters wird		Driver		Stopp
ог 1	Tests om	des Roboters wird	unterbrochen,	PL d/Kat. 3	Achse/	250 ms	Stopp Kotogoria 1
1	Padiongriff	unterbrochen,	sobald alle Achsen		PSCB		Kalegone i
	Беаендні	sobald alle	stillstehen. Wenn				
		Achsen stillstehen.	sich die beiden				
		Wenn sich die	digitalen Signale				
		beiden digitalen	unterscheiden, wird				
		Signale	der Not-Aus				
		unterscheiden,	ausgelöst.				
		wird der Not-Aus					
		ausgelöst.					
		Wird von einem	Wird von einem				
		externen Gerät	externen Gerät über				
		über Sicherheits-	Sicherheits-				
		eingänge	eingänge ausgelöst.				
		ausgelöst. Wenn	Wenn die externen				
		die externen	Anschlüsse ein				
		Anschlüsse ein	niedriges Signal				
	Not-Aus mit	niedriges Signal	abgeben (low), wird		Driver		
SF	ovtornor Not	abgeben (low),	der Stopp Kategorie	PL d/Kat 3		250 mc	Stopp
2		wird der Stopp	1 ausgelöst. Der	FL U/Nat. 5		230 1115	Kategorie 1
	Aus-Tasle	Kategorie 1	Roboter bremst bis		FSCB		
		ausgelöst. Der	zum Stillstand ab				
		Roboter bremst	und die				
		bis zum Stillstand	Stromversorgung				
		ab und die	des Roboters wird				
		Stromversorgung	unterbrochen,				
		des Roboters wird	sobald alle Achsen				
		unterbrochen,	stillstehen. Der				

Anhang C Sicherheitsfunktionen

-							
		sobald alle	externe Not-Aus-				
		Achsen stillstehen.	Eingang kann nur				
		Der externe Not-	durch einen				
		Aus-Eingang kann	Kurzschluss				
		nur durch einen	überbrückt werden.				
		Kurzschluss	Wenn sich die				
		überbrückt	beiden digitalen				
		werden. Wenn	Signale				
		sich die beiden	unterscheiden, wird				
		digitalen Signale	der Not-Aus				
		unterscheiden,	ausgelöst.				
		wird der Not-Aus					
		ausgelöst.					
		Wird von einem	Wird von einem				
		externen Gerät	externen Gerät über				
		über Sicherheits-	Sicherheits-				
		eingänge	eingänge ausgelöst.				
		ausgelöst. Wenn	Wenn die externen				
		die externen	Anschlüsse ein				
		Anschlüsse ein	hohes Signal				
		niedriges Signal	abgeben (high), wird				
		abgeben (low),	der Stopp Kategorie				
		wird der Stopp	2 ausgelöst. Der				
		Kategorie 2	Roboter wird				
		ausgelöst. Der	entsprechend der				
		Roboter wird	programmierten		Driver		
SF	Sicherheits-	entsprechend der	Trajektorie		Achse/	050	Stopp
3	stopp	programmierten	abgebremst und alle	PL d/Kat. 3	Schaltschra	350 ms	Kategorie 2
		Trajektorie	Achsen gehen in		nk/ PSCB		
		abgebremst und	den Stillstand über.				
		alle Achsen gehen	Der Roboter bleibt				
		in den Stillstand	noch aktiviert. Der				
		über. Der Roboter	Sicherheitsstopp-				
		bleibt noch	Eingang kann nur				
		aktiviert. Der	durch einen				
		Sicherheitsstopp-	Kurzschluss				
		Eingang kann nur	überbrückt werden.				
		durch einen	Wenn sich die				
		Kurzschluss	beiden digitalen				
		überbrückt	Signale				
		werden. Wenn	unterscheiden, wird				

ANHANG C SICHERHEITSFUNKTIONEN

		sich die beiden digitalen Signale unterscheiden, wird der Not-Aus ausgelöst.	der Not-Aus ausgelöst.				
SF 4	Begrenzung der Position der Achsen	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits- funktion ausgelöst.	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits- funktion ausgelöst.	PL d/Kat. 3	Driver Achse/ PSCB	250ms	Stopp Kategorie 1
SF 5	Begrenzung der Geschwindigk eit der Achsen	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits- funktion ausgelöst.	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits- funktion ausgelöst.	PL d/Kat. 3	Driver Achse/ PSCB	250 ms	Stopp Kategorie 1
SF 6	Begrenzung der Dreh- momente der Achsen	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits- funktion ausgelöst.	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits- funktion ausgelöst.	PL d/Kat. 3	Driver Achse/ PSCB	250 ms	Stopp Kategorie 1
SF 7	Begrenzung der Leistung der Achsen	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die	Jede Achse kann eine eigene Limitierung haben. Wenn diese Limitierung überschritten wird, wird die Sicherheits-	PL d/Kat. 3	Driver Achse/ PSCB	250 ms	Stopp Kategorie 1

		Sicherheits-	funktion ausgelöst.				
		funktion ausgelöst.					
		Überwacht wird	Überwacht wird die				
		die mechanische	mechanische				
		Leistung der	Leistung der				
		Roboter-	Roboter-bewegung				
		bewegung	(Drehmoment +				
		(Drehmoment +	Winkel-				
		Winkel-	geschwindigkeit für				
	Degradating	geschwindigkeit	jede Achse). Die				
		für jede Achse).	Begrenzung				
		Die Begrenzung	verringert		Driver	250 ms	
		verringert	Kollisionskräfte im		Driver		
SF	Begrenzung	Kollisionskräfte im	Falle einer Kollision.	PL d/Kat. 3	Achse/		Stopp
8	der Leistung	Falle einer	Die Funktion kann		Schaltschra		Kategorie 1
		Kollision. Die	sich auf die		IIN/ 1'30D		
		Funktion kann sich	Robotergeschwindig				
		auf die Roboter-	keit auswirken.				
		geschwindigkeit	Wenn diese				
		auswirken. Wenn	Limitierung				
		diese Limitierung	überschritten wird,				
		überschritten wird,	wird die Sicherheits-				
		wird die	funktion ausgelöst.				
		Sicherheits-					
		funktion ausgelöst.					
		Die Obergrenze	Die Obergrenze der				
		der TCP-	TCP-				
		Geschwindigkeit	Geschwindigkeit				
		kann definiert	kann definiert				
		werden, um die	werden, um die				
		Roboter-	Roboter-bewegung				
	Begrenzung	bewegung zu	zu limitieren. Sobald				
SF	der TCP-	limitieren. Sobald	die Begrenzung der		Driver		Stopp
9	Geschwindig-	die Begrenzung	TCP-	PL d/Kat. 3	Achse/	250 ms	Kategorie 1
	keit	der TCP-	Geschwindigkeit		PSCB		
		Geschwindigkeit	überschritten wird,				
		überschritten wird,	wird die Sicherheits-				
		wird die	funktion ausgelöst.				
		Sicherheits-	Das gilt nicht im				
		funktion ausgelöst.	Freedrive-Modus.				
		Das gilt nicht im					

ANHANG C SICHERHEITSFUNKTIONEN

		Freedrive-Modus.					
		Der Bereich der	Der Bereich der				
		zulässigen	zulässigen				
		Bewegung der	Bewegung der				
		Werkzeug-	Werkzeug-				
	Begrenzung	ausrichtung kann	ausrichtung kann		Driver		
SF	der	definiert werden.	definiert werden.				Stopp
10	Werkzeug-	Wenn diese	Wenn diese	PL d/Kat. 3	Achse/	250 ms	Kategorie 1
	ausrichtung	Limitierung	Limitierung		PSCB		
		überschritten wird,	überschritten wird,				
		wird die	wird die Sicherheits-				
		Sicherheits-	funktion ausgelöst.				
		funktion ausgelöst.					
		Mehrere	Mehrere				
		Sicherheits-planen	Sicherheits-planen				
		können definiert	können definiert				
		werden, um den	werden, um den				
		Bewegungs-	Bewegungs-bereich				
		bereich	einzugrenzen. Wenn				
	Begrenzung	einzugrenzen.	diese Limitierung				
05	der TCP-	Wenn diese	überschritten wird,		Driver		0.4
SF	Position	Limitierung	wird die Sicherheits-	PL d/Kat. 3	Achse/	250 ms	Stopp
11	(Sicherheits-	überschritten wird,	funktion ausgelöst.		PSCB		Kategorie 1
	planen)	wird die					
		Sicherheits-					
		funktion ausgelöst.					
		Die TCP-	Die TCP-				
		Realposition und	Realposition und die				
		die TCP-	TCP-Befehlsposition				
	Begrenzung	Befehlsposition	werden berechnet				
9E	der	werden berechnet	und verglichen.		Driver		Stopp
12	Abweichung	und verglichen.	Wenn der	PL d/Kat. 3	Achse/	250 ms	Kategorie 1
12	der TCP-	Wenn der	Fehlerwert den		PSCB		Nategone I
	Position	Fehlerwert den	Grenzwert für die				
		Grenzwert für die	Positions-				
		Positions-	abweichung				
		abweichung	überschreitet, wird				

						1	
		überschreitet, wird	die Sicherheits-				
		die Sicherheits-	funktion ausgelöst.				
		funktion ausgelöst.					
		Die TCP-	Die TCP-				
	2	Geschwindigkeit	Geschwindigkeit im				
		im Freedrive-	Freedrive-Modus				
	der TCD	Modus kann	kann definiert				
<u>ег</u>	Geochwindigk	definiert werden.	werden. Wenn diese		Driver		Stopp
12	oit im	Wenn diese	Limitierung	PL d/Kat. 3	Achse/	350 ms	Stopp Kotogoria 2
13		Limitierung	überschritten wird,		PSCB		Kalegone 2
	Freedrive-	überschritten wird,	wird die Sicherheits-				
	Modus	wird die	funktion ausgelöst.				
		Sicherheits-					
		funktion ausgelöst.					
		Kollisionen	Kollisionen werden				
		werden durch das	durch das				
		Drehmoment der	Drehmoment der				
		Achsen, die	Achsen, die				
		Abweichung der	Abweichung der				
		Position der	Position der Achsen		5.		
		Achsen und die	und die Abweichung		Driver		
SF	Kollisions-	Abweichung der	der TCP-Position.	PL d/Kat. 3	Achse/	050	Stopp
14	schutz	TCP-Position.	Wenn eine Kollision		Schalt-	350 ms	Kategorie 2
		Wenn eine	erkannt wird, wird		schrank/		
		Kollision erkannt	die Sicherheits-		PSCB		
		wird, wird die	funktion ausgelöst.				
		Sicherheits-					
		funktion ausgelöst.					
		Konfigurierbarer	Konfigurierbarer				
		zusätzlicher	zusätzlicher digitaler				
		digitaler Not-Aus-	Not-Aus-Sicherheits-				
		Sicherheits-	eingang. Die				
05	7	eingang. Die	Funktion wird von		Driver		
SF	Zusatzliche	Funktion wird von	einem externen	PL d/Kat. 3	Achse/	250 ms	Stopp
15	Not-Funktion	einem externen	Gerät über		PSCB		Kategorie 2
		Gerät über	Sicherheits-				
		Sicherheits-	eingänge ausgelöst.				
		eingänge	Wenn das				
		ausgelöst Wenn	Fingangssignal hoch				

		das	(high) ist, wird der				
		Eingangssignal	Stopp der Kategorie				
		hoch (high) ist,	1 ausgelöst. Der				
		wird der Stopp der	Roboter bremst bis				
		Kategorie 1	zum Stillstand ab				
		ausgelöst. Der	und die				
		Roboter bremst	Stromversorgung				
		bis zum Stillstand	des Roboters wird				
		ab und die	unterbrochen,				
		Stromversorgung	sobald alle Achsen				
		des Roboters wird	stillstehen. Wenn				
		unterbrochen,	sich die beiden				
		sobald alle	digitalen Signale				
		Achsen stillstehen.	unterscheiden, wird				
		Wenn sich die	der Not-Aus				
		beiden digitalen	ausgelöst.				
		Signale					
		unterscheiden,					
		wird der Not-Aus					
		ausgelöst.					
		Konfigurierbarer	Konfigurierbarer				
		zusätzlicher	zusätzlicher digitaler				
		digitaler	Sicherheitsstopp-				
		Sicherheitsstopp-	Eingang. Die				
		Eingang. Die	Funktion wird von				
		Funktion wird von	einem externen				
		einem externen	Gerät über				
	Zugötzligher	Gerät über	Sicherheits-		Driver		
<u>ег</u>	Sisharhaita	Sicherheits-	eingänge ausgelöst.		Achse/		Stopp
ог 16	stopp	eingänge	Wenn das	PL d/Kat. 3	Schalt-	350 ms	Stopp Katagaria 2
10	stopp-	ausgelöst. Wenn	Eingangssignal hoch		schrank/		Kalegorie 2
	Eingang	das	(high) ist, wird der		PSCB		
		Eingangssignal	Stopp der Kategorie				
		niedrig (low) ist,	2 ausgelöst. Der				
		wird der Stopp der	Roboter wird				
		Kategorie 2	entsprechend der				
		ausgelöst. Der	programmierten				
		Roboter wird	Trajektorie				
		entsprechend der	abgebremst und alle				

		programmierten Trajektorie abgebremst und alle Achsen gehen in den Stillstand über. Der Roboter bleibt noch aktiviert. Wenn sich die beiden	Achsen gehen in den Stillstand über. Der Roboter bleibt noch aktiviert. Wenn sich die beiden digitalen Signale unterscheiden, wird der Sicherheitsstopp ausgelöst.				
		digitalen Signale unterscheiden,					
		wird der					
		Sicherheitsstopp					
		ausgelöst.					
		Konfigurierbarer	Konfigurierbarer				
		digitaler	digitaler Sicherheits-				
		Sicherheits-	eingang für das				
		eingang für das	Zurücksetzen des				
		Zurücksetzen des	Sicherheitsstopp.				
		Sicherheits-	Die Funktion wird				
		stopps. Die	von einem externen				
		Funktion wird von	Gerät über				
		einem externen	Sicherheits-				
		Gerät über	eingänge ausgelöst.				
		Sicherheits-	Durch den				
		eingänge	Übergang von		Driver		Zurücksetz
SE	Sicherheits-	ausgelöst. Durch	einem hohen (high)		Achse/		en von
17	stopp-Reset-	den Übergang von	auf ein niedriges	PL d/Kat. 3	Schalt-	350 ms	Stopp
	Eingang	einem niedrigen	(low) Signal wird der		schrank/		Kategorie 2
		(low) auf ein	Sicherheitstopp-		PSCB		
		hohes (high)	zustand				
		Signal wird der	zurückgesetzt.				
		Sicherheitstopp-	Wenn sich die				
		zustand	beiden digitalen				
		zurückgesetzt.	Signale				
		Wenn sich die	unterscheiden, wird				
		beiden digitalen	der Sicherheitsstopp				
		Signale	nicht zurückgesetzt.				
		unterscheiden,					
		wird der					
		Sicherheits-stopp					

ANHANG C SICHERHEITSFUNKTIONEN

		nicht					
		zurückgesetzt.					
		Konfigurierbarer	Konfigurierbarer				
		digitaler	digitaler				
		Sicherheits-	Sicherheitseingang				
		eingang im	im reduzierten				
		reduzierten	Modus. Die Funktion				
		Modus. Die	wird von einem				
		Funktion wird von	externen Gerät über				
		einem externen	Sicherheits-				
		Gerät über	eingänge ausgelöst.				
		Sicherheitseingän	Wenn das				
		ge ausgelöst.	Eingangssignal hoch				
		Wenn das	(high) ist, wird der				
		Eingangssignal	reduzierte Modus				
		niedrig (low) ist,	ausgelöst. Der		Driver		
<u>ег</u>	Reduzierter	wird der reduzierte	reduzierte Modus		Achse/		Redu-
ог 40	Modus	Modus ausgelöst.	hat Auswirkungen	PL d/Kat. 3	Schalt-	350 ms	zierter
18	Eingang	Der reduzierte	auf die TCP-		schrank/		Modus
		Modus hat	Geschwindigkeit,		PSCB		
		Auswirkungen auf	TCP-Leistung, das				
		die TCP-	Drehmoment des				
		Geschwindigkeit,	Roboters und die				
		TCP-Leistung, das	Roboterleistung.				
		Drehmoment des	Wenn sich die				
		Roboters und die	beiden digitalen				
		Roboterleistung.	Signale				
		Wenn sich die	unterscheiden, wird				
		beiden digitalen	der reduzierte				
		Signale	Modus ausgelöst.				
		unterscheiden,					
		wird der reduzierte					
		Modus ausgelöst.					
		Konfigurierbarer	Konfigurierbarer				
		digitaler	digitaler				Zwei-
		Sicherheits-	Sicherheitsausgang				kanälige
SF	Ausgang Not-	ausgang für den	für den Zustand der				Ausgangs-
19	Aus-Taste-	Zustand der Not-	Not-Aus-Taste.	PL d/Kat. 3	PSCB	250 ms	signale mit
	Zustand	Aus-Taste. Wenn	Wenn die Not-Aus-				hoch-
		die Not-Aus-Taste	Taste am Bediengriff				omigem
		am Bediengriff	gedrückt wird, sind				Zustand

		gedrückt wird, sind die Signale der beiden digitalen Ausgänge niedrig (low). Der Not-Aus der externen Not- Aus-Taste und der zusätzliche Not- Aus-Eingang haben keine Auswirkung auf diesen Ausgang. Konfigurierbarer digitaler	die Signale der beiden digitalen Ausgänge hoch (high). Der Not-Aus der externen Not- Aus-Taste und der zusätzliche Not-Aus- Eingang haben keine Auswirkung auf diesen Ausgang. Konfigurierbarer digitaler				
SF 20	Ausgang System-Not- Aus-Zustand	Sicherheits- ausgang für den Not-Aus-Zustand. Wenn der Roboter in den Not-Aus- Zustand übergeht, sind die Signale der beiden digitalen Ausgänge niedrig (low). Das Not- Aus über die Not- Aus über die Not- Aus über die Not- Aus-Taste am Bediengriff, das Not-Aus über eine externe Not-Aus- Taste oder einen zusätzlichen Not- Aus-Eingang wirken sich auf diesen Ausgang aus.	Sicherheitsausgang für den Not-Aus- Zustand. Wenn der Roboter in den Not- Aus-Zustand übergeht, sind die Signale der beiden digitalen Ausgänge hoch (high). Das Not-Aus über die Not-Aus-Taste am Bediengriff, das Not- Aus über eine externe Not-Aus- Taste oder einen zusätzlichen Not- Aus-Eingang wirken sich auf diesen Ausgang aus.	PL d/Kat. 3	PSCB	250 ms	Zwei- kanälige Ausgangs- signale mit hoch- omigem Zustand

		Konfigurierbare	Konfigurierbare				
		digitale	digitale Sicherheits-				
		Sicherheits-	ausgänge für den				
		ausgänge für den	System-				
		System-	Sicherheitsstopp-				Zwei-
	Ausgang	Sicherheitsstopp-	Zustand. Wenn der				kanälige
SF	System-	Zustand. Wenn	Roboter in den				Ausgangs-
21	Sicherheits-	der Roboter in den	Sicherheitsstopp-	PL d/Kat. 3	PSCB	350 ms	signale mit
	stopp-	Sicherheitsstopp-	Zustand übergeht,				hoch-
	Zustand	Zustand übergeht,	sind die Signale der				omigem
		sind die Signale	beiden digitalen				Zustand
		der beiden	Ausgänge hoch				
		digitalen	(high).				
		Ausgänge niedrig					
		(low).					
		Konfigurierbare	Konfigurierbare				
		digitale	digitale Sicherheits-				
		Sicherheits-	ausgänge für den				
		ausgänge für den	Bewegungszustand				
		Bewegungs-	des Roboters. Wenn				
		zustand des	der Roboter in				- .
		Roboters. Wenn	Bewegung ist, sind				Zwei-
	D I I I	der Roboter in	die Signale der		Driver Achsen/	100 ms	kanalige
SF	Roboter in	Bewegung ist,	digitalen Ausgänge				Ausgangs-
22	Bewegung	sind die Signale	hoch (high). Die	PL d/Kat. 3			signale mit
	Ausgang	der digitalen	Signale der digitalen		PSCB		hoch-
		Ausgänge niedrig	Ausgänge sind				omigem
		(low). Die Signale	niedrig (low), wenn				Zustand
		der digitalen	der Roboter sich				
		Ausgänge sind	nicht bewegt.				
		hoch (high), wenn					
		der Roboter sich					
		nicht bewegt.					
		Konfigurierbarere	Konfigurierbarere				Zwei-
		digitale	digitale				kanälige
	Roboter nicht	- Sicherheitsausgän	- Sicherheitsausgäng		Driver		Ausgangs-
SF	in Bewegung	ge für den	e für den	PL d/Kat. 3	Achsen/	100 ms	signale mit
23	Ausgang	- Bewegungszustan	Bewegungszustand		PSCB		hoch-
	5 5	d des Roboters.	des Roboters. Wenn				omiaem
		Wenn der Roboter	der Roboter anhält				Zustand

		niedrig (low), wenn der Roboter sich im Anhaltevorgang	Anhaltevorgang oder Stillstand befindet.				
		oder Stillstand befindet.					
SF 24	Reduzierter Modus Ausgang	Konfigurierbare digitale Sicherheits- ausgänge für den reduzierten Modus. Wenn sich der Roboter im reduzierten Modus befindet, sind die Signale der beiden digitalen Ausgänge niedrig (low).	Konfigurierbare digitale Sicherheits- ausgänge für den reduzierten Modus. Wenn sich der Roboter im reduzierten Modus befindet, sind die Signale der beiden digitalen Ausgänge hoch (high).	PL d/Kat. 3	PSCB	350 ms	Zwei- kanälige Ausgangs- signale mit hoch- omigem Zustand
SF 25	Kein reduzierter Modus Ausgang	Konfigurierbare digitale Sicherheits- ausgänge für den normalen Modus. Wenn sich der Roboter nicht im reduzierten Modus befindet, sind die Signale der beiden digitalen	Konfigurierbare digitale Sicherheits- ausgänge für den normalen Modus. Wenn sich der Roboter nicht im reduzierten Modus befindet, sind die Signale der beiden digitalen Ausgänge hoch (high).	PL d/Kat. 3	PSCB	350 ms	Zwei- kanälige Ausgangs- signale mit hoch- omigem Zustand

		(low).					
		Die Sicherheits-	Die				
		funktion berechnet	Sicherheitsfunktion				
		kontinuierlich das	berechnet				
		für jede einzelne	kontinuierlich das für				
		Achse zulässige	jede einzelne Achse				
		Drehmoment, um	zulässige				
		innerhalb der für	Drehmoment, um				
		das TCP	innerhalb der für das				
		festgelegten	TCP festgelegten		Drivor		
SF	TCP-Kraft-	Kraftbegrenzung	Kraftbegrenzung zu	PL d/Kat 3	Achsen/	350 me	Stopp
26	begrenzung	zu bleiben. Wenn	bleiben. Wenn der	FL U/Nat. 5		550 ms	Kategorie 2
		der	Drehmomentausgan		FOOD		
		Drehmomentausg	g den Grenzwert				
		ang den	überschreitet, wird				
		Grenzwert die					
		überschreitet, wird	Sicherheitsfunktion				
		die Sicherheits-	ausgelöst.				
		funktion ausgelöst.					
		Konfigurierbarer	Konfigurierbarer				
		digitaler	digitaler				
		Sicherheits-	Sicherheitseingang				
		eingang für die 3-	für die 3-Positionen-				
		Positionen-	Freigabe. Diese				
		Freigabe. Diese	Sicherheitsfunktion				
		Sicherheits-	wird von einem				
		funktion wird von	externen Gerät über		Driver		
	3-Positionen-	einem externen	einen		Achsen/		
SF	Freigabe-	Gerät über einen	Sicherheitseingang	PL d/Kat. 3	Schalt-	350 ms	Stopp
27	Eingang	Sicherheits-	ausgelöst. Die		schrank/		Kategorie 2
	0 0	eingang	Begrenzung der 3-		PSCB		
		ausgelöst. Die	Positionen-Freigabe				
		Begrenzung der 3-	wird ausgelöst,				
		Positionen-	wenn das Signal der				
		Freigabe wird	externen Eingänge				
		ausgelöst, wenn	hoch (high) ist.				
		das Signal der	Wenn sich die				
		externen	beiden digitalen				
		Eingänge niedrig	Signale				

	(low) ist. Wenn	unterscheiden, wird		
	sich die beiden	die 3-Positionen-		
	digitalen Signale	Freigabe ausgelöst.		
	unterscheiden,			
	wird die 3-			
	Positionen-			
	Freigabe			
	ausgelöst.			

Anhang D Modbus E/A-Adresstabelle

	Тур	Name CAB 1.0 ¹	Name CAB 2.1 ²	Name MiniCab ³	Datentyp	Funktions-	Beschreibung	Einheit	Registertyp
8		DO1	DO1	DO1					
9	Allgemeiner	DO2	DO2	DO2					
10	digitaler	DO3	DO3	DO3					
11	Eingang	DO4	DO4	DO4					
135		DO128	DO128	DO128					Diskreter
136		-							Eingang ist
		-			BOOL	02			lesbar, aber
142		-	CAB DI7	CAB DI7					nicht
143		-	CAB DI8	-					schreibbar.
		-		-					
151		-	CAB DI16						
152		Tool DI1	Tool DI1	Tool DI1					
153		Tool DI2	Tool DI2	Tool DI2					
40		DI1	DI1	DI1					
41		DI2	DI2	DI2					
42		DI3	DI3	DI3					
43		DI4	DI4	DI4					
167		DI128	DI128	DI128					
168		-	CAB DO1	CAB DO1					
		-			BOOL	01/05/15			Spule
174		-	CAB DO7	CAB DO7					
175		-	CAB DO8	-					
		-		-					
183		-	CAB DO16	-					
184		Tool DO1	Tool DO1	Tool DO1					
185		Tool DO2	Tool DO2	Tool DO2					
96		AO01	AO01	AO01					
97		AO02	AO02	AO02					
98		AO03	AO03	AO03					Eingangs-
99	Analoger	AO04	AO04	AO04	UINT16				register
	Eingang				1	04			lesbar, aber
111	5 5	AO16	AO16	AO16	1				nicht
112		AO17	AO17	AO17					schreibbar
113		AO18	AO18	AO18	INT16				

114		AO19	AO19	AO19					
115		AO20	AO20	AO20					
127		AO32	AO32	AO32					
128		AO33	AO33	AO33					
129		AO33	AO33	AO33	FLOAT32				
130		AO34	AO34	AO34	(Biq-				
131		AO34	AO34	AO34	Endian-				
					Dar-				
190		AO64	AO64	AO64	stellung)				
191		AO64	AO64	AO64					
192		-	CAB AI1	-					
102									
100		Tool Al1		Tool Al1	UINT16				
194			Tool Al2						
195		1001 AI2	1001 AI2	1001 AI2					
100		A101	Aloo	Alon					
101		AI02	Aluz	Aluz					
102		A103	AI03	A103	UINT16				
103		AI04	AI04	AI04					
115		Al16	AI16	AI16					
116		AI17	AI17	AI17					
117		AI18	AI18	AI18					
118		Al19	AI19	AI19	INT16				Wartungs-
119	Analoger	AI20	AI20	AI20					register
	Ausgang					03/06/16			lesbar, aber
131		AI32	AI32	AI32					nicht
132		AI33	AI33	AI33					schreibbar
133		AI33	AI33	AI33	FLOAT32				
134		AI34	AI34	AI34	(Big-				
135		AI34	AI34	AI34	Endian-				
					Dar-				
194		AI64	AI64	AI64	stellung)				
195		AI64	Al64	AI64					
196		-	CAB AO1	-					
197		-	CAB AO2	-	UINT16				
Robo	oterbezogen	e Daten (Big	-Endian-Da	arstellung)	1				
300		Servo-Version N	r						Eingangs-
302	Roboterdaten	Roboter-Version	Nr.		INT32	04			register
304		Spannung Achse	e 1		FLOAT32		Spannung für	V	lesbar, aber

308 Spannung Achea 2 mont 309 Spannung Achea 4						
306 Spannung Achiee 3 schreebi	306	Spannung Achse 2		jede Achse		nicht
310 Spannung Achtee 4 312 Spannung Achtee 5 314 Spannung Achtee 0 316 Temperatur Achtee 1 318 Temperatur Achtee 1 320 Temperatur Achtee 2 321 Temperatur Achtee 3 322 Temperatur Achtee 5 324 Temperatur Achtee 6 325 Servo Achtee 1 Fehleroode 326 Servo Achtee 3 Fehleroode 337 Servo Achtee 4 Fehleroode 338 Servo Achtee 4 Fehleroode 339 Servo Achtee 4 Fehleroode 330 Servo Achtee 4 Fehleroode 331 Servo Achtee 4 Fehleroode 338 Servo Achtee 4 Fehleroode 339 Servo Achtee 4 Fehleroode 341 Achtee 7 Fehleroode 342 Achtee 7 Fehleroode 343 Achtee 7 Fehleroode 344 Achtee 7 Fehleroode 345 Achtee 7 Fehleroode 346 Achtee 7 Fehleroode 347 Achtee 6 Fehleroidue 348 Achtee 7 Fehleroode	308	Spannung Achse 3				schreibbar
312 Spannung Achse 6 314 Spannung Achse 6 316 Temperatur Achse 1 317 Temperatur Achse 2 320 Temperatur Achse 3 321 Temperatur Achse 3 322 Temperatur Achse 4 323 Temperatur Achse 5 324 Temperatur Achse 5 325 Servo Achse 1 Fehlerocode 326 Servo Achse 3 Fehlerocode 327 Servo Achse 3 Fehlerocode 328 Servo Achse 5 Fehlerocode 329 Servo Achse 5 Fehlerocode 334 Servo Achse 5 Fehlerocode 335 Servo Achse 5 Fehlerocode 336 Servo Achse 5 Fehlerocode 337 Achse 5 Fehlerocode 338 Servo Achse 6 Fehlerocode 340 Achse 7 Fehlerocode 341 Achse 6 Fehlerocode 342 Achse 6 Fehlerocode 343 Achse 6 Fehlerocode 344 Achse 6 Fehlerocode 345 Achse 6 Fehlerocode 346 Achse 6 Scheherocode	310	Spannung Achse 4				
314 Spannung Achae 6 Imperatur Achae 1 316 Temperatur Achae 1 Imperatur Achae 2 320 Temperatur Achae 3 Imperatur Achae 4 321 Temperatur Achae 4 Imperatur Achae 5 322 Temperatur Achae 6 Imperatur Achae 6 323 Servo Achae 1 Fehiercode Imperatur Achae 5 324 Servo Achae 1 Fehiercode Imperatur Achae 6 325 Servo Achae 5 Fehiercode Imperatur Achae 6 326 Servo Achae 6 Fehiercode Imperatur Achae 6 327 Servo Achae 7 Fehiercode Imperatur Achae 6 328 Servo Achae 7 Fehiercode Imperatur Achae 6 329 Servo Achae 7 Fehiercode Imperatur Achae 6 338 Servo Achae 7 Fehiercode Imperatur Achae 6 340 Achae 7 Fehierstatus Imperatur Achae 6 341 Achae 6 Fehiercode Imperatur Achae 6 342 Achae 6 Fehierstatus Imperatur Achae 7 343 Achae 6 Fehierstatus Imperatur Achae 7 344 Achae 6 Fehierstatus Imperatur Achae 7	312	Spannung Achse 5				
316 Temperatur Achee 1 316 Temperatur Achee 3 320 Temperatur Achee 3 322 Temperatur Achee 4 324 Temperatur Achee 5 326 Temperatur Achee 6 328 Servo Aches 1 Feblercode 330 Servo Aches 1 Feblercode 331 Servo Aches 1 Feblercode 332 Servo Aches 1 Feblercode 333 Servo Aches 4 Feblercode 334 Servo Aches 6 Feblercode 336 Servo Aches 6 Feblercode 338 Servo Aches 6 Feblercode 340 Aches 7 Feblercode 341 Aches 6 Feblercode 342 Aches 7 Feblercode 343 Aches 6 Feblercode 344 Aches 6 Feblercode 345 Aches 6 Feblercode 346 Aches 6 Feblercode 347 Aches 6 Feblercode 348 Aches 6 Feblercode 349 Aches 6 Feblercode 341 Aches 6 Feblercode 342 Aches 6 Feblercode 343 Aches 6 Feblercode 344 Aches 6 Feblercode 345 Aches 6 Feblercode 346 Aches 6 Feblercode 347 Aches 6 Feblercode <	314	Spannung Achse 6				
318 Temperatur Achae 2 320 Temperatur Achae 3 321 Temperatur Achae 4 322 Temperatur Achae 5 323 Servo Achae 1 Felierade 324 Temperatur Achae 6 325 Servo Achae 1 Felierade 326 Servo Achae 3 Felierade 327 Servo Achae 5 Felierade 328 Servo Achae 5 Felierade 329 Servo Achae 5 Felierade 330 Servo Achae 5 Felierade 331 Servo Achae 5 Felierade 332 Servo Achae 5 Felierade 338 Servo Achae 6 Felierade 338 Servo Achae 6 Felierade 340 Achae 1 Felierataus 341 Achae 7 Felierataus 342 Achae 7 Felierataus 343 Achae 6 Felierataus 344 Achae 6 Felierataus 345 Achae 6 Felierataus 346 Achae 1 aktiviett Status 347 Achae 2 aktiviett Status 348 Achae 3 Kollisionsstatus 349 Achae 3 Kollisionsstatus 346 Achae 3 Kollisionsstatus 347 Achae 3 Kollisionsstatus 348 Achae 3 Kollisionsstatus 351 Achae 3 Kollisionsstatus	316	Temperatur Achse 1				
320 Temperatur Achae 3 FLOAT32 Temperatur Kohse 4 322 Temperatur Achae 5 Fungeratur Achae 5 326 Temperatur Achae 6 Imageratur Achae 6 328 Servo Achae 1 Feblercode Imageratur Achae 6 330 Servo Achae 2 Feblercode Imageratur Achae 6 334 Servo Achae 4 Feblercode Imageratur Achae 6 336 Servo Achae 6 Feblercode Imageratur Achae 6 338 Servo Achae 6 Feblercode Imageratur Achae 6 339 Servo Achae 6 Feblercode Imageratur Achae 6 340 Achae 1 Feblercode Imageratur Achae 7 341 Achae 2 Feblerstatus Imageratur Achae 6 342 Achae 3 Feblerstatus Imageratur Achae 6 343 Achae 1 Feblerstatus Imageratur Achae 6 344 Achae 7 Feblerstatus Imageratur Achae 6 345 Achae 6 Feblerstatus Imageratur Achae 6 346 Achae 7 Feblerstatus Imageratur Achae 7 347 Achae 6 Feblerstatus Imageratur Achae 7 348 Achae 7 Achae 7 Status Imageratur Achae 7 349 Achae 7 Achae 7 Imageratur Achae 7 340 Achae 7 Achae 7 Imageratur Achae 7 341 Achae 7 Status	318	Temperatur Achse 2				
322 Temperatur Achee 4 FLOAT32 fur jede Achee "C 324 Temperatur Achee 5 Temperatur Achee 6 Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 328 Serve Achee 7 Fehlercode Image: Serve Achee 6 Fehlercode Image: Serve Achee 7 Fehlercode 338 Serve Achee 6 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 339 Serve Achee 6 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 341 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 341 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 342 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 343 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 344 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 345 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 346 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 347 Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode Image: Serve Achee 7 Fehlercode 34	320	Temperatur Achse 3		Temperatur		
324 Temperatur Achee 6 328 Servo Achee 1 Fehlercode 330 Servo Achee 1 Fehlercode 332 Servo Achee 2 Fehlercode 334 Servo Achee 3 Fehlercode 336 Servo Achee 4 Fehlercode 338 Servo Achee 5 Fehlercode 341 Achee 5 Fehlercode 342 Achee 7 Fehlerstatus 344 Achee 7 Fehlerstatus 342 Achee 7 Fehlerstatus 343 Achee 7 Fehlerstatus 344 Achee 7 Fehlerstatus 345 Achee 7 Fehlerstatus 346 Achee 7 Fehlerstatus 347 Achee 6 Fehlerstatus 348 Achee 7 Fehlerstatus 349 Achee 7 Fehlerstatus 346 Achee 6 Fehlerstatus 347 Achee 7 Fehlerstatus 348 Achee 6 Fehlerstatus 349 Achee 6 Fehlerstatus 340 Achee 7 Fehlerstatus 341 Achee 6 Fehlerstatus 342 Achee 7 Fehlerstatus 343 Achee 6 Fehlerstatus 344 Achee 6 Fehlerstatus 345 Achee 6 Fehlerstatus 346 Achee 6 Status 347 Achee 6 Status 348 Achee 7 Kollisionstatus<	322	Temperatur Achse 4	FLOAT32	für jede Achse	°C	
326 Temperatur Achse 6 328 Servo Achse 1 Fehlercode 330 Servo Achse 2 Fehlercode 334 Servo Achse 3 Fehlercode 336 Servo Achse 6 Fehlercode 338 Servo Achse 6 Fehlercode 340 Achse 1 Fehlercode 341 Achse 6 Fehlercode 342 Achse 1 Fehlerstatus 344 Achse 2 Fehlerstatus 342 Achse 1 Fehlerstatus 343 Achse 1 Fehlerstatus 344 Achse 2 Fehlerstatus 345 Achse 1 Fehlerstatus 346 Achse 1 Fehlerstatus 347 Achse 2 Fehlerstatus 348 Achse 1 Schlerstatus 349 Achse 1 Status 341 Achse 2 Achivert Status 342 Achse 2 Achivert Status 344 Achse 2 Achivert Status 345 Achse 3 Achivert Status 346 Achse 3 Achivert Status 347 Achse 2 Achivert Status 348 Achse 3 Achivert Status 351 Achse 3 Achivert Status 352 Achse 3 Achivert Status 353 Achse 2 Kolisionstatus 354 Achse 3 Kolisionstatus 355 Achse 3 Kolisionstatus 366	324	Temperatur Achse 5				
328 Servo Achse 1 Fehlercode 330 Servo Achse 2 Fehlercode 331 Servo Achse 3 Fehlercode 332 Servo Achse 4 Fehlercode 338 Servo Achse 5 Fehlercode 338 Servo Achse 6 Fehlercode 340 Achse 7 Fehlercode 341 Achse 7 Fehlercode 342 Achse 7 Fehlercode 343 Achse 7 Fehlercode 344 Achse 7 Fehlerstatus 345 Achse 6 Fehlercode 346 Achse 6 Fehlercode 347 Achse 6 Fehlerstatus 348 Achse 6 Fehlerstatus 349 Achse 7 Fehlerstatus 349 Achse 7 Fehlerstatus 348 Achse 6 Fehlerstatus 349 Achse 1 aktiviert Status 349 Achse 2 aktiviert Status 350 Achse 4 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 1 Kollisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 2 Kollisionsstatus 355 Achse 4 Kollisonsstatus 366 Achse 3 Stromstatike 360 Achse 4 Stromstatike 360 Achse 4 Stromstatike 361 Achse 3 Stromstatike 362 <td>326</td> <td>Temperatur Achse 6</td> <td></td> <td></td> <td></td> <td></td>	326	Temperatur Achse 6				
330 Servo Achse 2 Fehlercode 332 Servo Achse 3 Fehlercode 334 Servo Achse 4 Fehlercode 336 Servo Achse 5 Fehlercode 338 Servo Achse 6 Fehlercode 340 Achse 1 Fehlerstatus 341 Achse 2 Fehlerstatus 342 Achse 1 Fehlerstatus 343 Achse 2 Fehlerstatus 344 Achse 5 Fehlerstatus 345 Achse 6 Fehlerstatus 346 Achse 1 schlviert Status 347 Achse 6 Fehlerstatus 348 Achse 3 aktiviert Status 349 Achse 1 aktiviert Status 349 Achse 3 aktiviert Status 350 Achse 6 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 1 Kollisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 3 Kollisionsstatus 355 Achse 4 Kollisionsstatus 366 Achse 3 Stomstärke 360 Achse 3 Stomstärke 360 Achse 3 Stomstärke 361 Achse 3 Stomstärke 362 Achse 3 Kollisionstatus	328	Servo Achse 1 Fehlercode				
32 Serva Achse 3 Fehlercode INT32 Serva 33 Serva Achse 4 Fehlercode INT32 Fehlercode für jede Achse 33 Serva Achse 5 Fehlercode INT32 34 Achse 1 Fehlerstatus Junt16 34 Achse 2 Fehlerstatus Serva- 341 Achse 3 Fehlerstatus Junt16 342 Achse 4 Fehlerstatus UINT16 343 Achse 5 Fehlerstatus Junt16 344 Achse 6 Fehlerstatus Junt16 345 Achse 6 Fehlerstatus Junt16 346 Achse 1 aktiviert Status Junt16 347 Achse 2 aktiviert Status Junt16 348 Achse 3 aktiviert Status Junt16 349 Achse 6 aktiviert Status Junt16 350 Achse 6 aktiviert Status Junt16 351 Achse 6 aktiviert Status Serva- 352 Achse 1 Kollisionstatus Serva- 353 Achse 7 Kollisionstatus Serva- 354 Achse 3 Kollisionstatus Serva- 355 Achse 4 Kollisionstatus Junt16 356 Achse 5 Kollisionstatus Junt16 357 Achse 6 Kollisionstatus Junt16 358 Achse 1 Stromsta	330	Servo Achse 2 Fehlercode				
334 Servo Achse 4 Fehlercode INT32 Fehlercode für jede Achse 336 Servo Achse 6 Fehlercode	332	Servo Achse 3 Fehlercode		Servo-		
336 Servo Achse 5 Fehlercode 338 Servo Achse 6 Fehlercode 340 Achse 1 Fehlerstatus 341 Achse 2 Fehlerstatus 342 Achse 3 Fehlerstatus 343 Achse 3 Fehlerstatus 344 Achse 5 Fehlerstatus 345 Achse 6 Fehlerstatus 346 Achse 6 Fehlerstatus 347 Achse 6 Fehlerstatus 348 Achse 2 stituiert Status 348 Achse 3 aktiviert Status 349 Achse 6 aktiviert Status 350 Achse 6 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 1 kulisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 5 Kollisionsstatus 355 Achse 7 Kollisionsstatus 356 Achse 7 Kollisionsstatus 357 Achse 6 Kollisionsstatus 360 Achse 1 Stromstärke 360 Achse 2 Stromstärke 361 Achse 3 Stromstärke 362 Achse 1 Stromstärke 364 Achse 3 Stromstärke 366 Achse 5 Stromstärke	334	Servo Achse 4 Fehlercode	INT32	Fehlercode für		
338 Servo Achse 6 Fehlercode 340 Achse 1 Fehlerstatus 341 Achse 2 Fehlerstatus 342 Achse 3 Fehlerstatus 343 Achse 3 Fehlerstatus 344 Achse 5 Fehlerstatus 345 Achse 6 Fehlerstatus 346 Achse 7 Fehlerstatus 347 Achse 8 Fehlerstatus 348 Achse 3 aktiviert Status 348 Achse 3 aktiviert Status 349 Achse 6 aktiviert Status 350 Achse 6 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 1 kollisionsstatus 353 Achse 7 kollisionsstatus 354 Achse 7 kollisionsstatus 355 Achse 7 kollisionsstatus 356 Achse 7 kollisionsstatus 357 Achse 7 kollisionsstatus 360 Achse 1 Stromstärke 360 Achse 2 Stromstärke 361 Achse 3 Stromstärke 362 Achse 1 Stromstärke 364 Achse 3 Stromstärke 366 Achse 3 Stromstärke	336	Servo Achse 5 Fehlercode		jede Achse		
340 Achse 1 Fehlerstatus 341 Achse 2 Fehlerstatus 342 Achse 3 Fehlerstatus 343 Achse 4 Fehlerstatus 344 Achse 5 Fehlerstatus 345 Achse 6 Fehlerstatus 346 Achse 6 Fehlerstatus 347 Achse 2 aktiviert Status 348 Achse 2 aktiviert Status 349 Achse 3 aktiviert Status 350 Achse 4 aktiviert Status 351 Achse 5 aktiviert Status 352 Achse 1 Kollisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 3 Kollisionsstatus 355 Achse 4 Kollisionsstatus 356 Achse 4 Stomstärke 360 Achse 2 Stomstärke 360 Achse 3 Stomstärke 361 Achse 5 Stomstärke 362 Achse 5 Stomstärke	338	Servo Achse 6 Fehlercode				
341 Achse 2 Fehlerstatus UINT16 Fehlerstatus. 0 steht für 343 Achse 3 Fehlerstatus 0 steht für 344 Achse 5 Fehlerstatus 344 Achse 5 Fehlerstatus 345 Achse 6 Fehlerstatus 346 Achse 6 Fehlerstatus 347 Achse 2 aktiviert Status 348 Achse 3 aktiviert Status 349 Achse 4 aktiviert Status 350 Achse 4 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 6 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 1 Kollisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 3 Kollisionsstatus 355 Achse 4 Kollisionsstatus 356 Achse 4 Kollisionsstatus 358 Achse 2 Stromstärke Kollision*. 360 Achse 3 Str	340	Achse 1 Fehlerstatus		Servo-		
342 Achse 3 Fehlerstatus UINT16 0 steht für 343 Achse 4 Fehlerstatus Jehler, 1 344 Achse 5 Fehlerstatus steht , kein 345 Achse 6 Fehlerstatus Fehler', 1 346 Achse 1 aktiviert Status steht , kein 347 Achse 2 aktiviert Status Servo- 348 Achse 3 aktiviert Status UINT16 349 Achse 4 aktiviert Status UINT16 350 Achse 5 aktiviert Status UINT16 351 Achse 5 aktiviert Status status. 0 steht 352 Achse 1 kollisionsstatus steht , aktiv'. 353 Achse 2 Kollisionsstatus Servo- 354 Achse 3 Kollisionsstatus Kollisions- 355 Achse 4 Kollisionsstatus Servo- 356 Achse 5 Kollisionsstatus UINT16 357 Achse 6 Kollisionsstatus Kollision*. 358 Achse 6 Kollisionsstatus für , kolision*. 360 Achse 3 Stromstärke FLOAT32 361 Achse 4 Stromstärke Achse 4 Stromstärke 362 Achse 5 Stromstärke FLOAT32	341	Achse 2 Fehlerstatus		Fehlerstatus.		
343 Achse 4 Fehlerstatus UINT16 _Fehler', 1 344 Achse 5 Fehlerstatus steht "kein 345 Achse 6 Fehlerstatus Fehler''. 346 Achse 1 aktiviert Status Fehler''. 347 Achse 2 aktiviert Status Servo- 348 Achse 3 aktiviert Status LUINT16 349 Achse 4 aktiviert Status UINT16 350 Achse 6 aktiviert Status UINT16 351 Achse 6 aktiviert Status status. 0 steht 352 Achse 1 Kollisionsstatus steht "aktiv". 353 Achse 2 Kollisionsstatus Servo- 354 Achse 3 Kollisionsstatus Servo- 355 Achse 4 Kollisionsstatus Servo- 356 Achse 5 Kollisionsstatus UINT16 357 Achse 6 Kollisionsstatus für "keine 358 Achse 1 Stromstärke Kollision". 361 Achse 2 Stromstärke FLOAT32 362 Achse 3 Stromstärke Achse 4 Stromstärke 364 Achse 5 Stromstärke FLOAT32	342	Achse 3 Fehlerstatus		0 steht für		
344 Achse 5 Fehlerstatus steht _kein 345 Achse 6 Fehlerstatus Fehler*. 346 Achse 1 aktiviert Status servo- 347 Achse 2 aktiviert Status JUINT16 348 Achse 3 aktiviert Status JUINT16 349 Achse 4 aktiviert Status JUINT16 350 Achse 5 aktiviert Status JUINT16 351 Achse 6 aktiviert Status Juint16 352 Achse 1 Kollisionsstatus Servo- 353 Achse 2 Kollisionsstatus Servo- 354 Achse 3 Kollisionsstatus Juint16 355 Achse 4 Kollisionsstatus Juint16 356 Achse 5 Kollisionsstatus Juint16 357 Achse 6 Kollisionsstatus Juint16 358 Achse 2 Stromstärke FLOAT32 360 Achse 3 Stromstärke A 362 Achse 4 Stromstärke FLOAT32 364 Achse 5 Stromstärke FLOAT32	343	Achse 4 Fehlerstatus	UINT16	"Fehler", 1		
345 Achse 6 Fehlerstatus Fehler". 346 Achse 1 aktiviert Status Servo- 347 Achse 2 aktiviert Status UINT16 348 Achse 3 aktiviert Status UINT16 349 Achse 4 aktiviert Status UINT16 350 Achse 5 aktiviert Status UINT16 351 Achse 5 aktiviert Status Servo- 352 Achse 6 kollisionsstatus Servo- 353 Achse 2 Kollisionsstatus Servo- 354 Achse 2 Kollisionsstatus Servo- 355 Achse 4 Kollisionsstatus Servo- 356 Achse 5 Kollisionsstatus Kollisions- 357 Achse 6 Kollisionsstatus Kollision*. 358 Achse 1 Stromstärke Kollision*. 360 Achse 2 Stromstärke FLOAT32 366 Achse 5 Stromstärke A	344	Achse 5 Fehlerstatus		steht "kein		
346 Achse 1 aktiviert Status 347 Achse 2 aktiviert Status 348 Achse 2 aktiviert Status 349 Achse 3 aktiviert Status 350 Achse 4 aktiviert Status 351 Achse 5 aktiviert Status 352 Achse 6 aktiviert Status 353 Achse 2 Kollisionsstatus 354 Achse 2 Kollisionsstatus 355 Achse 3 Kollisionsstatus 356 Achse 4 Kollisionsstatus 357 Achse 6 Kollisionsstatus 358 Achse 1 Stromstärke 360 Achse 2 Stromstärke 362 Achse 3 Stromstärke 364 Achse 5 Stromstärke	345	Achse 6 Fehlerstatus		Fehler".		
347Achse 2 aktiviert StatusServo- Aktivierungs- status. 0 steht348Achse 3 aktiviert StatusUINT16349Achse 4 aktiviert Statusstatus. 0 steht350Achse 5 aktiviert Statusfür "inaktiv", 1351Achse 6 aktiviert Statussteht "aktiv".352Achse 1 Kollisionsstatussteht "aktiv".353Achse 2 Kollisionsstatussteht "aktiv".354Achse 3 KollisionsstatusUINT16355Achse 4 KollisionsstatusUINT16356Achse 5 Kollisionsstatusfür "keine357Achse 6 Kollisionsstatusfür "Kollision". 1358Achse 1 Stromstärkefür "Kollision".360Achse 2 Stromstärkefür jede Achse361Achse 3 StromstärkeFLOAT32	346	Achse 1 aktiviert Status				
348 Achse 3 aktiviert Status 349 Achse 4 aktiviert Status 350 Achse 5 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 1 Kollisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 3 Kollisionsstatus 355 Achse 4 Kollisionsstatus 356 Achse 5 Kollisionsstatus 357 Achse 6 Kollisionsstatus 358 Achse 1 Stromstärke 360 Achse 2 Stromstärke 362 Achse 3 Stromstärke 364 Achse 4 Stromstärke 366 Achse 5 Stomstärke	347	Achse 2 aktiviert Status		Servo-		
349Achse 4 aktiviert StatusUINT16status. 0 steht350Achse 5 aktiviert Statusfür "inaktiv", 1351Achse 6 aktiviert Statussteht "aktiv".352Achse 1 KollisionsstatusKollisionsstatus353Achse 2 KollisionsstatusKollisions-354Achse 3 Kollisionsstatusstatus. 0 steht355Achse 4 KollisionsstatusKollisions-356Achse 5 Kollisionsstatusstatus. 0 steht357Achse 6 Kollisionsstatusfür "keine358Achse 1 Stromstärkefür "Kollision".360Achse 2 StromstärkeKollision".361Achse 3 StromstärkeFLOAT32364Achse 5 Stromstärkefür jede Achse366Achse 5 StromstärkeFLOAT32	348	Achse 3 aktiviert Status		Aktivierungs-		
350 Achse 5 aktiviert Status 351 Achse 6 aktiviert Status 352 Achse 6 aktiviert Status 353 Achse 1 Kollisionsstatus 353 Achse 2 Kollisionsstatus 354 Achse 3 Kollisionsstatus 355 Achse 4 Kollisionsstatus 356 Achse 5 Kollisionsstatus 357 Achse 6 Kollisionsstatus 358 Achse 1 Stromstärke 360 Achse 2 Stromstärke 362 Achse 3 Stromstärke 364 Achse 5 Stromstärke 366 Achse 5 Stromstärke	349	Achse 4 aktiviert Status	UINT16	status. 0 steht		
351Achse 6 aktiviert Statussteht "aktiv".352Achse 1 Kollisionsstatus353Achse 2 Kollisionsstatus354Achse 3 Kollisionsstatus355Achse 4 Kollisionsstatus356Achse 5 Kollisionsstatus357Achse 6 Kollisionsstatus358Achse 1 Stromstärke360Achse 2 Stromstärke362Achse 3 Stromstärke364Achse 5 Stromstärke366Achse 5 Stromstärke	350	Achse 5 aktiviert Status		für "inaktiv", 1		
352Achse 1 Kollisionsstatus353Achse 2 Kollisionsstatus354Achse 2 Kollisionsstatus355Achse 3 Kollisionsstatus356Achse 4 Kollisionsstatus356Achse 5 Kollisionsstatus357Achse 6 Kollisionsstatus358Achse 1 Stromstärke360Achse 2 Stromstärke362Achse 3 Stromstärke364Achse 4 Stromstärke366Achse 5 Stromstärke	351	Achse 6 aktiviert Status		steht "aktiv".		
353Achse 2 Kollisionsstatus354Achse 3 Kollisionsstatus355Achse 3 Kollisionsstatus355Achse 4 Kollisionsstatus356Achse 5 Kollisionsstatus357Achse 6 Kollisionsstatus358Achse 1 Stromstärke360Achse 2 Stromstärke362Achse 3 Stromstärke364Achse 5 Stromstärke366Achse 5 Stromstärke	352	Achse 1 Kollisionsstatus		Servo-		
354Achse 3 KollisionsstatusUINT16status. 0 steht355Achse 4 KollisionsstatusIINT16für "keine356Achse 5 KollisionsstatusKollision", 1357Achse 6 Kollisionsstatusfür "Kollision".358Achse 1 Stromstärkereference360Achse 2 Stromstärkestromstärke362Achse 3 StromstärkeFLOAT32364Achse 4 Stromstärkeachse 5 Stromstärke366Achse 5 Stromstärkeachse 5 Stromstärke	353	Achse 2 Kollisionsstatus		Kollisions-		
355Achse 4 KollisionsstatusUINT16356Achse 5 Kollisionsstatusfür "keine356Achse 5 KollisionsstatusKollision", 1357Achse 6 Kollisionsstatusfür "Kollision".358Achse 1 StromstärkeKollision ".360Achse 2 StromstärkeKollision ".362Achse 3 StromstärkeFLOAT32364Achse 4 StromstärkeAchse 5 Stromstärke366Achse 5 StromstärkeFLOAT32	354	Achse 3 Kollisionsstatus		status. 0 steht		
356 Achse 5 Kollisionsstatus Kollision", 1 357 Achse 6 Kollisionsstatus für "Kollision". 358 Achse 1 Stromstärke für "Kollision". 360 Achse 2 Stromstärke Stromstärke 362 Achse 3 Stromstärke Achse 4 Stromstärke 364 Achse 5 Stromstärke Achse 5 Stromstärke	355	Achse 4 Kollisionsstatus	UINT16	für "keine		
357 Achse 6 Kollisionsstatus für "Kollision". 358 Achse 1 Stromstärke 360 Achse 2 Stromstärke 362 Achse 3 Stromstärke 364 Achse 4 Stromstärke 366 Achse 5 Stromstärke	356	Achse 5 Kollisionsstatus		Kollision", 1		
358 Achse 1 Stromstärke 360 Achse 2 Stromstärke 362 Achse 3 Stromstärke 364 Achse 4 Stromstärke 366 Achse 5 Stromstärke	357	Achse 6 Kollisionsstatus		für "Kollision".		
360 Achse 2 Stromstärke 362 Achse 3 Stromstärke 364 Achse 4 Stromstärke 366 Achse 5 Stromstärke	358	Achse 1 Stromstärke				
362 Achse 3 Stromstärke FLOAT32 Stromstärke 364 Achse 4 Stromstärke A 366 Achse 5 Stromstärke A	360	Achse 2 Stromstärke	1			
364 Achse 4 Stromstärke 366 Achse 5 Stromstärke	362	Achse 3 Stromstärke	FLOAT32	Stromstärke	А	
366 Achse 5 Stromstärke	364	Achse 4 Stromstärke	1	für jede Achse		
	366	Achse 5 Stromstärke				

- 1

368	Achse 6 Stromstärke				
370	Sensor Kraft X				
372	Sensor Kraft Y		Drehmoment/	N	
374	Sensor Kraft Z		Kraft des		
376	Sensor Drehmoment RX	FLOAT32	Kraftregelungs		
378	Sensor Drehmoment RY		sensors	Nm	
380	Sensor Drehmoment RZ				
382	Position Achse 1				
384	Position Achse 2				
386	Position Achse 3	F 1 0 1 T 00	Position für	0	
388	Position Achse 4	FLOAT32	jede Achse		
390	Position Achse 5				
392	Position Achse 6				
394	Geschwindigkeit Achse 1				
396	Geschwindigkeit Achse 2				
398	Geschwindigkeit Achse 3		Geschwindig-	0/-	
400	Geschwindigkeit Achse 4	FLOAT32	Keit für jede	-/s	
402	Geschwindigkeit Achse 5		Achse		
404	Geschwindigkeit Achse 6				
406	TCP-Position X				
408	TCP-Position Y			mm	
410	TCP-Position Z	FLOATOO	TOD		
412	TCP-Position RX	FLUAT32	TCP		
414	TCP-Position RY			0	
416	TCP-Position RZ				
418	TCP-Geschwindigkeit X				
420	TCP-Geschwindigkeit Y		705	mm/s	
422	TCP-Geschwindigkeit Z	FLOATOO	TCP-		
424	TCP-Geschwindigkeit RX	FLUAT32	Geschwindig-		
426	TCP-Geschwindigkeit RY		KEIL	°/s	
428	TCP-Geschwindigkeit RZ				
430	TCP-Offset X				
432	TCP-Offset Y)0 /l	mm	
434	TCP-Offset Z		werkzeug-		
436	TCP-Offset RX	FLUAT32	koordinaten-		
438	TCP-Offset RY		system	۰	
440	TCP-Offset RZ				
442	Basis-Offset X		Benutzer-		
444	Basis-Offset Y	FLOAT32	koordinaten-	mm	
446	Basis-Offset Z		system		

ANHANG D MODBUS E/A-ADRESSTABELLE

448	Basis-Offset RX				
450	Basis-Offset RY			٥	
452	Basis-Offset RZ				
454	Kollisionsschutzstopp	UINT16	Roboterkollisi on. 0 steht für "keine Kollision", 1 für "Kollision".		
455	Not-Aus	UINT16	Not-Aus		
456	Roboter einschalten	UINT16	Einschalten		
457	Roboter aktivieren	UINT16	Aktivieren		
458	Weiche Begrenzung (Soft Limit)	UINT16	Weiche Begrenzung (Soft Limit)		
459	In Position (INPOS)	UINT16	Zielposition erreichen		
460	Bewegungsmodus	UINT16	Servo- Positions- modus: 4 Admittanz- regelung:2 Freedrive- Modus:1 Andere Modi: 0		
461	Reduzierter Modus Level 1	UINT16	Verlangsamter Modus Level 1: 1 Verlangsamter Modus Level 2: 2 Schutzstopp: 3		
462	Erhöhung der Geschwindigkeit	FLOAT32	Erhöhung der Geschwindig- keit		
464	Bewegung-Fehlercode	INT32	Fehlercode		
466	Schaltschrank-Temperatur	FLOAT32	Schaltschrank -Temperatur		
468	Durchschnittsleistung Schaltschrank		Leistung		

470 Durchschnittsstromstärke Schaltschrank Stromstärke 472 UHI_PULES FLOAT32 474 UHI_SPEED Förderband- 476 UHI_DIR UINT16			Schaltschrank			
470 Durchschnittsstromstärke Schaltschrank Schaltschrank 472 UHI_PULES FLOAT32 474 UHI_SPEED Förderband- 476 UHI_DIR UINT16 VINT16 Virsprünglicher			Stromstärke			
472 UHI_PULES FLOAT32 474 UHI_SPEED FIOAT32 476 UHI_DIR UINT16 UINT16 UINT16 UINT16			Schaltschrank		urchschnittsstromstärke Schaltschrank	470
472 UHI_PULES FLOAT32 Impuls 474 UHI_SPEED Filoe Geschwindig- keit 476 UHI_DIR UINT16 Förderband- Richtung			Förderband-			
474 UHI_SPEED Förderband- 476 UHI_DIR UINT16 Förderband- Richtung Urspründlicher				FLOAT32	HI_PULES	472
474 UHI_SPEED Geschwindig- keit Förderband- 476 UHI_DIR UINT16 Förderband- Richtung Urspründlicher	-					
474 UHI_DIR UINT16 Geschwindig- keit Förderband- Richtung Urspründlicher			Forderband-			
476 UHI_DIR UINT16 Förderband- Richtung Urspründlicher			Geschwindig-		HI_SPEED	474
476 UHI_DIR UINT16 Förderband- Richtung Urspründlicher	-		keit			
Richtung			Förderband-	UINT16	HI_DIR	476
	-		Richtung			
			Ursprünglicher			
477 UHI_ORIGIN_PULES INT32 Impuls des			Impuls des	INT32	HI_ORIGIN_PULES	477
Förderbands	-		Förderbands			ļ
Roboter			Roboter			
meldet Fehler:			meldet Fehler:			
			1			
479 ERROR_TRIGGERED BOOL Roboter			Roboter	BOOL	RROR_TRIGGERED	479
meldet keinen			meldet keinen			
Fehler: 0			Fehler: 0			
TCP-Linear-			TCP-Linear-			
480 TCP-Lineargeschwindigkeit FLOAT32 geschwindig- mm/s		mm/s	geschwindig-	FLOAT32	CP-Lineargeschwindigkeit	480
keit			keit			
Roboter-			Roboter-			
482 Prüfsumme UINT16 Prüfsumme Prüfsumme			Prüfsumme	UINT16	üfsumme	482
TCP-Winkel-			TCP-Winkel-			
484 TCP-Winkelgeschwindigkeit FLOAT32 geschwindig- °/s		°/s	geschwindig-	FLOAT32	CP-Winkelgeschwindigkeit	484
keit			keit			
Roboter nicht			Roboter nicht			
im reduzierten			im reduzierten			
Modus: 0			Modus: 0			
486 Reduzierter Modus Roboter im			Roboter im		eduzierter Modus	486
reduzierten			reduzierten			
Modus: 1			Modus: 1			
487 Reserviert Reserviert	-		Reserviert		eserviert	487
Reserviert Reserviert			Reserviert		eserviert	
555 Reserviert Reserviert	1		Reserviert		eserviert	555

ANMERKUNG

Sie können die Versionsnummer des Schaltschranks anhand der Seriennummer an dem Aufkleber auf dem Schaltschrank erfahren.

¹ Die Seriennummer des CAB 1.0 besteht aus der Modellnummer des Roboters gefolgt von einer "10" und einer dreistelligen fortlaufenden Nummer (Beispiel: Zu710001).

² Die Seriennummer des CAB 2.1 besteht aus der Modellnummer des Roboters gefolgt von einer "21" und einer vierstelligen fortlaufenden Nummer (Beispiel: CAB7210001).

³ Die Seriennummer des MiniCab besteht aus dem "CABm" gefolgt von der MiniCab-Version und einer vierstelligen fortlaufenden Nummer (Beispiel: CABm110001).

Anhang E PROFINET E/A-Adresstabelle

	Übertragungstyp R -> P (Roboter	> PLC)		PLC-Einstellu	ngen
Bit	Daten	Datengruppe	Slot	Subslot	I-
					Eingabeadresse
0	Seriennummer des Roboters (Int32)				0
32	Servo-Versionsnummer (Int32)				4
64	CAB_AVERAGECURRENT (Float) (W)				8
96	CAB_AVERAGEPOWER (Float) (°C)				12
128	CAB_AVERAGETEMPERATURE (Float) (°C)				16
160	POWER_ON (Einschalten)				20.0
160+1	ROBOT_ENABLE (Roboter aktiviert)				20.1
160+2	Reserviert	Roboterstatus,			20.2
192	MOTION_ERRCODE (Int32)	Sicherheitseinstellungen	1	1	24
224	Motion Model (UInt32)	1_R -> P_Robot_Safety			28
224+8	Verlangsamter Modus Level (UInt32)	32+4 Bytes			29
224+16	EMERGENCY_STOP (Not-Aus)				30.0
224+17	COLLISION_PROTECTIVE_STOP				30.1
224+18	ON_SOFT_LIMIT				30.2
224+19	REDUCED_MODE				
224+20	Reserviert				30.3
256	CHECKSUM (Prüfsumme) (Int32)				32
288	Spannung Achse 1 (Float) (V)				36
320	Spannung Achse 2 (Float) (V)				40
352	Spannung Achse 3 (Float) (V)				44
384	Spannung Achse 4 (Float) (V)				48
416	Spannung Achse 5 (Float) (V)				52
448	Spannung Achse 6 (Float) (V)				56
480	Stromstärke Achse 1 (Float) (A)				60
512	Stromstärke Achse 2 (Float) (A)	Achse			64
544	Stromstärke Achse 3 (Float) (A)	2_R -> P_Achse	2	1	68
576	Stromstärke Achse 4 (Float) (A)	172+48 Bytes			72
608	Stromstärke Achse 5 (Float) (A)				76
640	Stromstärke Achse 6 (Float) (A)				80
672	Position Achse 1 (Float) (°)				84
704	Position Achse 2 (Float) (°)				88
736	Position Achse 3 (Float) (°)				92
768	Position Achse 4 (Float) (°)				96
800	Position Achse 5 (Float) (°)				100

ANHANG E PROFINET E/A-ADRESSTABELLE

	r				1
832	Position Achse 6 (Float) (°)				104
864	Geschwindigkeit Achse 1 (Float) (°/s)				108
896	Geschwindigkeit Achse 2 (Float) (°/s)				112
928	Geschwindigkeit Achse 3 (Float) (°/s)				116
960	Geschwindigkeit Achse 4 (Float) (°/s)				120
992	Geschwindigkeit Achse 5 (Float) (°/s)				124
1024	Geschwindigkeit Achse 6 (Float) (°/s)				128
1088	Temperatur Achse 1 (Float) (°C)				132
1120	Temperatur Achse 2 (Float) (°C)				136
1152	Temperatur Achse 3 (Float) (°C)				140
1184	Temperatur Achse 4 (Float) (°C)				144
1216	Temperatur Achse 5 (Float) (°C)				148
1248	Temperatur Achse 6 (Float) (°C)				152
1280	Drehmoment Achse 1 (Float) (Nm)				156
1312	Drehmoment Achse 2 (Float) (Nm)				160
1344	Drehmoment Achse 3 (Float) (Nm)				164
1376	Drehmoment Achse 4 (Float) (Nm)				168
1408	Drehmoment Achse 5 (Float) (Nm)				172
1440	Drehmoment Achse 6 (Float) (Nm)				176
1472	Servo Achse 1 Fehlercode (Int32)				180
1504	Servo Achse 2 Fehlercode (Int32)				184
1536	Servo Achse 3 Fehlercode (Int32)				188
1568	Servo Achse 4 Fehlercode (Int32)				192
1600	Servo Achse 5 Fehlercode (Int32)				196
1632	Servo Achse 6 Fehlercode (Int32)				200
1001	Fehlerstatus Achse (kein Fehler: 0, Fehler: 1)				000
1664	(UInt8)				208
1664+9	Aktivierungsstatus Achse (deaktiviert: 0,				200
1004+0	aktiviert:1) (UInt8)				209
1664+16	Kollisionsstatus Achse (keine Kollision: 0,				210
1004+10	Kollision: 1) (UInt8)				210
1664+24	Reserviert				211
1696	Reserviert (Float) 44 Byte				212
2048	TCP-Position X (Float) (mm)				256
2080	TCP-Position Y (Float) (mm)				260
2112	TCP-Position Z (Float) (mm)	TCP und Basis			264
2144	TCP-Position RX (Float) (°)	3_R -> P_TCP_BASE	2	1	268
2176	TCP-Position RY (Float) (°)	88+40 Bytes			272
2208	TCP-Position RZ (Float) (°)				276
2240	TCP-Geschwindigkeit X (Float) (mm)				280
-					
------	-------------------------------------	---------------------------------	---	---	-----
2272	TCP-Geschwindigkeit Y (Float) (mm)				284
2304	TCP-Geschwindigkeit Z (Float) (mm)				288
2336	TCP- Geschwindigkeit RX (Float) (°)				292
2368	TCP- Geschwindigkeit RY (Float) (°)				296
2400	TCP- Geschwindigkeit RZ (Float) (°)				300
2432	TCP-Offset X (mm)				304
2464	TCP-Offset Y (mm)				308
2496	TCP-Offset Z (mm)				312
2528	TCP-Offset RX (°)				316
2560	TCP-Offset RY (°)				320
2592	TCP-Offset RZ (°)				324
2624	Basis-Offset X (mm)				328
2656	Basis-Offset Y (mm)				332
2688	Basis-Offset Z (mm)				336
2720	Basis-Offset RX (°)				340
2752	Basis-Offset RY (°)				344
2784	Basis-Offset RZ (°)				348
2816	TCP-Lineargeschwindigkeit (mm/s)				352
2848	TCP-Winkelgeschwindigkeit (°/s)				356
2880	Reserviert (40 Bytes)				360
3200	Boolesche Register 0-31	Boolesche Ausgangsregister			400
3232	Boolesche Register 32-63	Digitaler Ausgang (DO) 0 bis 63	4		404
0004		4_R -> P_DO	4	1	400
3264	Reserviert (4 Bytes)	8+4 Bytes			408
3296	Integer Register 0				412
3328	Integer Register 1				416
3360	Integer Register 2				420
3392	Integer Register 3				424
3424	Integer Register 4				428
3456	Integer Register 5				432
3488	Integer Register 6	Integer Ausgangsregister			436
3520	Integer Register 7	Analoger Ausgang (AO) 0 bis 63	F	1	440
3552	Integer Register 8	5_R -> P_AO_INT	5	I	444
3584	Integer Register 9	128 Bytes			448
3616	Integer Register 10				452
3648	Integer Register 11				456
3680	Integer Register 12				460
3712	Integer Register 13				464
3744	Integer Register 14				468
3776	Integer Register 15				472

	-				
3808	Integer Register 16				476
3840	Integer Register 17				480
3872	Integer Register 18				484
3904	Integer Register 19				488
3936	Integer Register 20				492
3968	Integer Register 21				496
4000	Integer Register 22				500
4032	Integer Register 23				504
4064	Integer Register 24				508
4096	Integer Register 25				512
4128	Integer Register 26				516
4160	Integer Register 27				520
4192	Integer Register 28				524
4224	Integer Register 29				528
4256	Integer Register 30				532
4288	Integer Register 31				536
4320	Float Register 0				540
4352	Float Register 1				544
4384	Float Register 2				548
4416	Float Register 3				552
4448	Float Register 4				556
4480	Float Register 5				560
4512	Float Register 6				564
4544	Float Register 7				568
4576	Float Register 8				572
4608	Float Register 9				576
4640	Float Register 10	Float Ausgangsregister			580
4672	Float Register 11	Analoger Ausgang (AO) 0 bis 63			584
4704	Float Register 12	6_R -> P_AO_FLOAT	6	1	588
4736	Float Register 13	128 Bytes			592
4768	Float Register 14				596
4800	Float Register 15				600
4832	Float Register 16				604
4864	Float Register 17				608
4896	Float Register 18				612
4928	Float Register 19				616
4960	Float Register 20				620
4992	Float Register 21				624
5024	Float Register 22				628
5056	Float Register 23				632

	-				
5088	Float Register 24				636
5120	Float Register 25				640
5152	Float Register 26				644
5184	Float Register 27				648
5216	Float Register 28				652
5248	Float Register 29				656
5280	Float Register 30				660
5312	Float Register 31				664
	Übertragungstyp P -> R (PLC ->	Roboter)		PLC-Einstellu	ngen
Bit	Daten	Datengruppe	Slot	Subslot	Q-Ausgabe
	Übertragungstyp R -> P (Roboter -> PLC)				
0	Boolesche Register 0-31	Boolesche Eingangsregister			0
32	Boolesche Register 32-63	Digitaler Eingang (DI) 0 bis 64			4
		7_P -> R_AO	7	1	_
64	Reserviert (4 Bytes)	8+4 Bytes			8
96	Integer Register 0				12
128	Integer Register 1				16
160	Integer Register 2				20
192	Integer Register 3				24
224	Integer Register 4				28
256	Integer Register 5				32
288	Integer Register 6				36
320	Integer Register 7				40
352	Integer Register 8				44
384	Integer Register 9				48
416	Integer Register 10				52
448	Integer Register 11	Integer Eingangsregister			56
480	Integer Register 12	Analoger Eingang (AI) 0 bis 31	8	1	60
512	Integer Register 13	8_P -> R_AI_INT			64
544	Integer Register 14	128 Bytes			68
576	Integer Register 15				72
608	Integer Register 16				76
640	Integer Register 17				80
672	Integer Register 18				84
704	Integer Register 19				88
736	Integer Register 20				92
768	Integer Register 21				96
800	Integer Register 22				100
832	Integer Register 23				104
864	Integer Register 24				108

896	Integer Register 25			112
928	Integer Register 26			116
960	Integer Register 27			120
992	Integer Register 28			124
1024	Integer Register 29			128
1056	Integer Register 30			132
1088	Integer Register 31			136
1120	Float Register 0			140
1152	Float Register 1			144
1184	Float Register 2			148
1216	Float Register 3			152
1248	Float Register 4			156
1280	Float Register 5			160
1312	Float Register 6			164
1344	Float Register 7			168
1376	Float Register 8	-		172
1408	Float Register 9			176
1440	Float Register 10	-		180
1472	Float Register 11			184
1504	Float Register 12	-		188
1536	Float Register 13			192
1568	Float Register 14	-		196
1600	Float Register 15	-		200
1632	Float Register 16			204
1664	Float Register 17			208
1696	Float Register 18			212
1728	Float Register 19			216
1760	Float Register 20			220
1792	Float Register 21			224
1824	Float Register 22			228
1856	Float Register 23			232
1888	Float Register 24			236
1920	Float Register 25			240
1952	Float Register 26			244
1984	Float Register 27			248
2016	Float Register 28			252
2048	Float Register 29			256
2080	Float Register 30			260
2112	Float Register 31			264

Register	Datentyp	Script-Funktion	Index (CAB 1.0)	Index (CAB 2.1)	Index (MiniCab)
DO 0-63	boolesche	get_digital_output (type, index) set_digital_output(type, index, tarState, immed)	136-199	144-207	135-198
AO 0-31	int	get_analog_output (type, index) set_analog_output(type, index, tarValue, immed)	64-95	66-97	64-95
AO 32-63	float	get_analog_output (type, index) set_analog_output (type, index, tarValue, immed)	96-127	98-129	96-128

Register	Datentyp	Script-Funktion	Index (CAB 1.0)	Index (CAB 2.1)	Index (MiniCab)
DI 0-63	boolesche	get_digital_input (type, index)	136-199	144-207	135-198
AI 0-31	int	get_analog_input (type, index)	72-103	66-97	64-95
AI 32-63	float	get_analog_input (type, inde)	104-135	98-129	96-127

Anhang F Ethernet/IP E/A-Adresstabelle

Übertragungstyp R -> P (Roboter -> PLC)			PLC-Einstellungen (492 Bytes)	
Bit	Daten	Datengruppe	I-Eingabeadresse	
0	Seriennummer des Roboters (Int32)		0	
32	Servo-Versionsnummer (Int32)		4	
64	POWER_ON (Einschalten)		8.0	
64+1	ROBOT_ENABLE (Roboter aktiviert)		8.1	
64+2	Reserviert		8.2	
96	MOTION_ERRCODE (Int32)	Roboterstatus,	12	
128	Motion Model (UInt32)	Sicherheitseinstellungen	16	
128+8	Verlangsamter Modus Level (UInt32)	1_R -> P_Robot_Safety	17	
128+16	EMERGENCY_STOP (Not-Aus)	20 Bytes	18.0	
128+17	COLLISION_PROTECTIVE_STOP		18.1	
128+18	ON_SOFT_LIMIT		18.2	
128+19	REDUCED_MODE		18.3	
128+20	Reserviert		18.4	
160	Stromstärke Achse 1 (Float) (A)		20	
192	Stromstärke Achse 2 (Float) (A)		24	
224	Stromstärke Achse 3 (Float) (A)		28	
256	Stromstärke Achse 4 (Float) (A)		32	
288	Stromstärke Achse 5 (Float) (A)		36	
320	Stromstärke Achse 6 (Float) (A)		40	
352	Position Achse 1 (Float) (°)		44	
384	Position Achse 2 (Float) (°)		48	
416	Position Achse 3 (Float) (°)		52	
448	Position Achse 4 (Float) (°)		56	
480	Position Achse 5 (Float) (°)	Achse	60	
512	Position Achse 6 (Float) (°)	2_R -> P_Achse	64	
544	Geschwindigkeit Achse 1 (Float) (°/s)	124+20 Bytes	68	
576	Geschwindigkeit Achse 2 (Float) (°/s)		72	
608	Geschwindigkeit Achse 3 (Float) (°/s)		76	
640	Geschwindigkeit Achse 4 (Float) (°/s)		80	
672	Geschwindigkeit Achse 5 (Float) (°/s)		84	
704	Geschwindigkeit Achse 6 (Float) (°/s)		88	
736	Drehmoment Achse 1 (Float) (Nm)		92	
768	Drehmoment Achse 2 (Float) (Nm)		96	
800	Drehmoment Achse 3 (Float) (Nm)		100	
832	Drehmoment Achse 4 (Float) (Nm)		104	
864	Drehmoment Achse 5 (Float) (Nm)		108	

896	Drehmoment Achse 6 (Float) (Nm)		112
928	Servo Achse 1 Fehlercode (Int32)		116
960	Servo Achse 2 Fehlercode (Int32)		120
992	Servo Achse 3 Fehlercode (Int32)		124
1024	Servo Achse 4 Fehlercode (Int32)		128
1056	Servo Achse 5 Fehlercode (Int32)		132
1088	Servo Achse 6 Fehlercode (Int32)		136
1120	Fehlerstatus Achse (kein Fehler: 0, Fehler: 1)		140
	(UInt8)		
1120+8	Aktivierungsstatus Achse (deaktiviert: 0,		141
	aktiviert:1) (UInt8)		
1120+16	Kollisionsstatus Achse (keine Kollision: 0,		142
	Kollision: 1) (UInt8)		
1120+24	Reserviert		143
1152	Prüfsumme (Int32)		144
1184	Reserviert (20 Bytes)		148-160
1312	Sensor Kraft X (Float) (N)	ТСР	164
1344	Sensor Kraft Y (Float) (N)	3_R -> P_TCP	168
1376	Sensor Kraft Z (Float) (N)	80+44 Bytes	172
1408	Sensor Drehmoment RX (Float) (Nm)		176
1440	Sensor Drehmoment RY (Float) (Nm)		180
1472	Sensor Drehmoment RZ (Float) (Nm)		184
1504	TCP-Position X (Float) (mm)		188
1536	TCP-Position Y (Float) (mm)		192
1568	TCP-Position Z (Float) (mm)		196
1600	TCP-Position RX (Float) (°)		200
1632	TCP-Position RY (Float) (°)		204
1664	TCP-Position RZ (Float) (°)		208
1696	TCP-Offset X (Float) (mm)		212
1728	TCP-Offset Y (Float) (mm)		216
1760	TCP-Offset Z (Float) (mm)		220
1792	TCP-Offset RX (Float) (°)		224
1824	TCP-Offset RY (Float) (°)		228
1856	TCP-Offset RZ (Float) (°)		232
1888	TCP-Lineargeschwindigkeit (Float) (mm/s)	1	236
1920	TCP-Winkelgeschwindigkeit (Float) (°/s)		240
1952	Reserviert (44 Bytes)		244
2304	Boolesche Register 0-31	Boolesche Ausgangsregister	288
2336	Boolesche Register 32-63	Digitaler Ausgang (DO) 0 bis 63	292
2368	Reserviert (4 Bytes)	4_R -> P_DO	296

ANHANG F ETHERNET/IP E/A-ADRESSTABELLE

		8+4 Bytes	
2400	Integer Register 0		300
2432	Integer Register 1		304
2464	Integer Register 2		308
2496	Integer Register 3		312
2528	Integer Register 4		316
2560	Integer Register 5		320
2592	Integer Register 6		324
2624	Integer Register 7		328
2656	Integer Register 8		332
2688	Integer Register 9		336
2720	Integer Register 10	Integer Ausgangsregister	340
2752	Integer Register 11	Analoger Ausgang (AO) 0 bis 23	344
2784	Integer Register 12	5_R -> P_AO_INT	348
2816	Integer Register 13	96 Bytes	352
2848	Integer Register 14		356
2880	Integer Register 15		360
2912	Integer Register 16		364
2944	Integer Register 17		368
2976	Integer Register 18		372
3008	Integer Register 19		376
3040	Integer Register 20		380
3072	Integer Register 21		384
3104	Integer Register 22		388
3136	Integer Register 23		392
3168	Float Register 0		396
3200	Float Register 1		400
3232	Float Register 2		404
3264	Float Register 3		408
3296	Float Register 4		412
3328	Float Register 5		416
3360	Float Register 6	Float Ausgangsregister	420
3392	Float Register 7	Analoger Ausgang (AO) 0 bis 23	424
3424	Float Register 8	6_R -> P_AO_FLOAT	428
3456	Float Register 9	96 Bytes	432
3488	Float Register 10		436
3520	Float Register 11		440
3552	Float Register 12		444
3584	Float Register 13		448
3616	Float Register 14		452

3648	Float Register 15		456
3680	Float Register 16		460
3712	Float Register 17		464
3744	Float Register 18		468
3776	Float Register 19		472
3808	Float Register 20		476
3840	Float Register 21		480
3872	Float Register 22		484
3904	Float Register 23		488
	Übertragungstyp P -> R (PLC ->	Roboter)	PLC-Einstellungen (492 Bytes)
Bit	Daten	Datengruppe	O-Ausgabeadresse
0	Boolesche Register 0-31	Boolesche Eingangsregister	0
32	Boolesche Register 32-63	Digitaler Eingang (DI) 0 bis 63	4
		7_P -> R_DI	
64	Reserviert (4 Bytes)	8+4 Bytes	8
96	Integer Register 0		12
128	Integer Register 1		16
160	Integer Register 2		20
192	Integer Register 3		24
224	Integer Register 4		28
256	Integer Register 5		32
288	Integer Register 6		36
320	Integer Register 7		40
352	Integer Register 8		44
384	Integer Register 9		48
416	Integer Register 10	Integer Eingangsregister	52
448	Integer Register 11	Analoger Eingang (AI) 0 bis 23	56
480	Integer Register 12	8_P -> R_AI_INT	60
512	Integer Register 13	96 Bytes	64
544	Integer Register 14		68
576	Integer Register 15		72
608	Integer Register 16		76
640	Integer Register 17		80
672	Integer Register 18		84
704	Integer Register 19		88
736	Integer Register 20		92
768	Integer Register 21		96
800	Integer Register 22		100
832	Integer Register 23		104
864	Float Register 0	Float Eingangsregister	108

ANHANG F ETHERNET/IP E/A-ADRESSTABELLE

896	Float Register 1	Analoger Eingang (AI) 0 bis 23	112
928	Float Register 2	9_P -> R_AI_FLOAT	116
960	Float Register 3	96 Bytes	120
992	Float Register 4		124
1024	Float Register 5		128
1056	Float Register 6		132
1088	Float Register 7		136
1120	Float Register 8		140
1152	Float Register 9		144
1184	Float Register 10		148
1216	Float Register 11		152
1248	Float Register 12		156
1280	Float Register 13		160
1312	Float Register 14		164
1344	Float Register 15		168
1376	Float Register 16		172
1408	Float Register 17		176
1440	Float Register 18		180
1472	Float Register 19		184
1504	Float Register 20		188
1536	Float Register 21		192
1568	Float Register 22		196
1600	Float Register 23		200
1632			204
	Reserviert (288 Bytes)		
3904			488

Register	Datentyp	Script-Funktion	Index
DO 0-63	boolesche	get_digital_output (type, index) set_digital_output (type, index, tarState, immed)	0-63
AO 0-23	int	get_analog_output (type, index) set_analog_output (type, index, tarValue, immed)	0-23
AO 24-47	float	get_analog_output (type, index) set_analog_output (type, index, tarValue, immed)	24-47

ANHANG F ETHERNET/IP E/A-ADRESSTABELLE

Register	Datentyp	Script-Funktion	Index
DI 0-63	boolesche	get_digital_input (type, index)	0-63
AI 0-23	int	get_analog_input (type, index)	0-23
AI 24-47	float	get_analog_input (type, index)	24-47

Anhang G Allgemeine E/A-Adresstabelle

Name	Beschreibung	Einheit
Seriennummer des Roboters		
Servo-Versionsnummer		
Spannung Achse 1		
Spannung Achse 2		
Spannung Achse 3		
Spannung Achse 4	Spannung für jede Achse	V
Spannung Achse 5		
Spannung Achse 6		
Temperatur Achse 1		
Temperatur Achse 2		
Temperatur Achse 3		
Temperatur Achse 4	i emperatur tur jede Acnse	-C
Temperatur Achse 5		
Temperatur Achse 6		
Servo Achse 1 Fehlercode		
Servo Achse 2 Fehlercode		
Servo Achse 3 Fehlercode	Sania Esklassada füsiada Askas	
Servo Achse 4 Fehlercode	Servo-Femercode fui jede Achse	
Servo Achse 5 Fehlercode		
Servo Achse 6 Fehlercode		
Achse 1 Fehlerstatus		
Achse 2 Fehlerstatus		
Achse 3 Fehlerstatus	Sanza Eablarstatus, Alstabt für kein Eablar" 1 stabt, Eablar"	
Achse 4 Fehlerstatus		
Achse 5 Fehlerstatus		
Achse 6 Fehlerstatus		
Aktivierungsstatus Achse 1		
Aktivierungsstatus Achse 2	-	
Aktivierungsstatus Achse 3	Servo-Aktivierungs-status 0 steht für inaktiv" 1 steht aktiv"	
Aktivierungsstatus Achse 4		
Aktivierungsstatus Achse 5		
Aktivierungsstatus Achse 6		
Kollisionsstatus Achse 1		
Kollisionsstatus Achse 2		
Kollisionsstatus Achse 3	Servo-Kollisions-status. 0 steht für "keine Kollision", 1 für "Kollision".	
Kollisionsstatus Achse 4	_	
Kollisionsstatus Achse 5		

Kollisionsstatus Achse 6		
Stromstärke Achse 1		
Stromstärke Achse 2		
Stromstärke Achse 3		
Stromstärke Achse 4	Stromstärke für jede Achse	A
Stromstärke Achse 5		
Stromstärke Achse 6		
Sensor Kraft X		
Sensor Kraft Y		Ν
Sensor Kraft Z		
Sensor Drehmoment RX	Drehmoment/Kraft des Kraftregelungssensors	
Sensor Drehmoment RY		Nm
Sensor Drehmoment RZ		
Position Achse 1		
Position Achse 2		
Position Achse 3		
Position Achse 4	Position für jede Achse	o
Position Achse 5		
Position Achse 6		
Geschwindigkeit Achse 1		
Geschwindigkeit Achse 2		
Geschwindigkeit Achse 3		
Geschwindigkeit Achse 4	Geschwindigkeit für jede Achse	°/s
Geschwindigkeit Achse 5		
Geschwindigkeit Achse 6		
TCP-Position X		
TCP-Position Y		mm
TCP-Position Z		
TCP-Position RX	TCP-Position	
TCP-Position RY		۰
TCP-Position RZ		
TCP-Geschwindigkeit X		
TCP-Geschwindigkeit Y		mm/s
TCP-Geschwindigkeit Z		
TCP- Geschwindigkeit RX	1CP-Geschwindigkeit	
TCP- Geschwindigkeit RY		°/s
TCP- Geschwindigkeit RZ		
TCP-Offset X		
TCP-Offset Y	Werkzeug-Koordinatensystem	mm
TCP-Offset Z		

TCP-Offset RX		
TCP-Offset RY	Werkzeug-Koordinatensystem	٥
TCP-Offset RZ		
Basis-Offset X		
Basis-Offset Y		mm
Basis-Offset Z		
Basis-Offset RX	Benutzer-Koordinatensystem	
Basis-Offset RY		۰
Basis-Offset RZ		
COLLISION_PROTECTIVE_STOP	Roboterkollision. 0 steht für "keine Kollision", 1 für "Kollision".	
EMERGENCY_STOP (Not-Aus)	Not-Aus	
POWER_ON (Einschalten)	Einschalten	
ROBOT_ENABLE (Roboter aktiviert)	Aktivieren	
ON_SOFT_LIMIT	Weiche Begrenzung (Soft Limit)	
INPOS	Zielposition erreichen	
	Servo-Positions-modus: 4 Admittanz-regelung:2	
Bewegungsmodus	Freedrive-Modus:1	
	Andere Modi: 0	
	Verlangsamter Modus Level 1: 1	
Verlangsamter Modus Level	Verlangsamter Modus Level 2: 2	
	Schutzstopp: 3	
Erhöhung der Geschwindigkeit	Erhöhung der Geschwindigkeit	
MOTION_ERRCODE	Fehlercode	
CAB_AVERAGETEMPERATURE	Schaltschrank-Temperatur	
CAB_AVERAGEPOWER	Leistung Schaltschrank	
CAB_AVERAGECURRENT	Stromstärke Schaltschrank	
UHI_PULES	Förderband-Impuls	
UHI_SPEED	Förderband-Geschwindigkeit	
UHI_DIR	Förderband-Richtung	
UHI_ORIGIN_PULES	Ursprünglicher Impuls des Förderbands	
	Roboter meldet Fehler: 1	
ERROR_TRIGGERED	Roboter meldet keinen Fehler: 0	
TCP_LINEAR_SPEED	TCP-Lineargeschwindigkeit	mm/s
Prüfsumme	Roboter-Prüfsumme	
TCP_ANGULAR_SPEED	TCP-Winkelgeschwindigkeit	°/s
	Roboter nicht im reduzierten Modus: 0	
	Roboter im reduzierten Modus: 1	
Reserviert	Reserviert	
Reserviert	Reserviert	
Reserviert	Reserviert	

Notizen

JAKA Robotics GmbH Siemensstraße 31 90766 Fürth Telefon: +49 911 2170850 Website: https://www.jakarobotics.com/de/